
RX Transformer SW Manual.doc

updates available from:
www.reverseXSL.com

Copyright
Art of e.biz

The reverseXSL Transformer
Main Software Manual
V2.1 Aug09 web release
V2.2 Apr12 Now as Open Source
V2.3 Dec12 Exception List can be retrieved in XML,

added option UnfoldPSCRMRemarks

Foreword
This document describes the reverseXSL Transformer API, the associated command-line
tools, and explains how to develop any-to-any structured message transformations with the
software. A separate document describes the Parser DEF file format, one of the three meta-
data elements that drive message Transformations.
Please refer to the web site www.reverseXSL.com for tutorials, tool-tips, samples, and ad-
vanced questions.

Table of Contents
1. What you should know __ 3
2. The Software and its Installation __ 5
3. Operations __ 7
3.1 TRANSFORMER OVERVIEW __7
3.2 USING THE COMMAND LINE INTERFACE ___10
3.3 USING THE TRANSFORMER API IN JAVA___14

2 / 15

www.reverseXSL.com
Formally…

ReverseXSL.com is a trademark of Art of e.Biz, an inde-
pendent software editor with registered offices in Belgium.
The present document is not contractual and does not
bind Art of e.Biz to meet the functions and features as ex-
actly described in the present document. Although care as
been taken to reflect to the best extent possible the design
and features of the product described herewith, Art of
e.Biz reserves the right to modify the enclosed descrip-
tions without notice.

Art of e.Biz disclaims any explicit or implied warranties or
fitness for purpose. The company and the author(s) of the
present document will not be liable for any loss of profit or
any other commercial damage.

Product names, logos, brands, and other trademarks
cited, featured, or referred to within the present document
and all associated materials, do remain the property of the
respective trademark holders.
These trademark holders are not affiliated with Rever-
seXSL.com or Art of e.Biz, neither the related products,
nor the website. They do not sponsor or endorse our ma-
terials.

No part of this document can be copied or reproduced or
transmitted in any form and by any means without the
permission of the respective authors or its copyright own-
ers except within the scope of the reverseXSL Open-
source Licensing Agreement which is Apache 2.0 .

3 / 15

www.reverseXSL.com 1. What you should know

We strive to provide you with the best documentation available.
There's hardly anything more frustrating than starting to loose time
by the lack of proper information.

This manual describes how to configure and execute message transforma-
tions using either the command-line tools, or the Transformer API's (Appli-
cation Programming Interfaces) in the Java language.

XML
< />

T

Transformer
Std API

ransform

API

Parser

API

any
Txt

XML
< />

XML
< />

any
Txt

XML
< />

Command line or API interface

Decision
table

DEF
file

XSL tem
-plate

Figure 1. reverseXSL software components

As represented in the figure above, the reverseXSL software operations
rely heavily on two components:
 A Parser component, which is an original piece of software;
 The Java API for XML Processing (JAXP) that notably contains XSL

Transformations (XSLT).
XSLT is a standard component of the Java Runtime environment.
This component is therefore not duplicated in the ReverseXSL.jar.

The idea is simply that of augmenting the native XSLT transformation ca-
pabilities with the reverseXSL Parser capabilities, and bundle the whole as
a new, extended, Transformer.

The present docu-
ment is reference
material. Tutorials,
samples, trial exer-
cises as well as
overviews are pub-
lished at the web
site.

DEF files are explained in a
separate document

The description is contained
in the meta-data file itself

A W3C re-
commenda-

tion described
in many

books and
web sites

Described
in this
manual

4 / 15

www.reverseXSL.com

Your learning curriculum:

 If you just intend to play with the software, and try a few available
samples, you will likely not need to study DEF files. The introduction
to Message DEFinition files that is published on the web1 site may be
sufficient to grasp a good idea about the Parser component. You will
anyhow encounter regular expressions within the tutorial examples.
Let me insist, regular expressions are not intuitive; however, the ap-
parent complexity is entirely contained in only 11 special characters:
. * + ? ([\ { ^ $ and | —there’s no more to study. You will save
yourself from a lot of frustration, spare much time, and possibly begin
to grasp their magical power by taking the time to browse the accel-
erated tutorial that we have prepared for that purpose (exclusively on
the web site).

 If you intend to develop new transformations, the required knowledge
goes as follows:
o An understanding of the message formats that you have to

process is indeed a must, whether these are application-
specific, corporate conventions, or EDI standards.

o Playing quickly with the Transformer and/or reading through
this manual will help you plan your job (what functions the soft-
ware readily supplies, how to integrate it, etc.).

o Then you should learn about regular expressions, and study
the Message DEFinition file format used by the Parser.
Both topics are covered in the Message DEFinition Files docu-
mentation.

o As you develop, it is quite efficient to immediately test partial
message DEFinitions2 against message samples. To do so,
you will use the Parser via the command line interface 'Parse',
and configure such commands to run within your favourite de-
velopment workbench.
Tips for automating the development cycle are published at the
web site.

o You may then need to perform an XSL Transformation next to
the Parser Transformation step. Indeed, you will need to learn
XSLT. You shall also consider acquiring an XSLT editor to in-
crease productivity (free and pay-for solutions are available as
plug-ins into your development workbench or as dedicated
products). Again, you may want to test at the same time you de-
velop the XSL template.

o Last, you will edit the Mapping Selection Table in the rever-
seXSL Transformer, and create an entry that will match the new
message against the required Parsing step and XSL Transfor-
mation step. This last operation may take just 10 minutes. You

1 http://www.reversexsl.com/j/index.php?option=com_content&task=view&id=27
2 As soon as you have formalized a first segment with a few data elements you can start testing.
This is a very productive facility.

Evaluate

Develop

The learning of
XSLT and associ-
ated editors are
covered in numer-
ous web sites and
books. We do not
provide such infor-
mation and soft-
ware.

5 / 15

www.reverseXSL.com will then configure a 'Transform' command to run within your
favourite development workbench for a final check of the
complete transformation.
Tips for automating the development cycle are published at the
web site.

o At this point, you may consider building a JUnit test case over
the transformer API in order to automate test series.

o Then it's time to integrate the software using the API or com-
mand line interface into your application. It may range from a
simple Windows script or Excel Macro that triggers the trans-
former to the development of a dedicated adapter into an appli-
cation server, or message broker, or EAI platform.
Tips for integrating the tool into various systems are published
at the web site, as well as source code and scripts.

Later on, as you amend existing transformations or develop new ones, you
will just need to deploy new and updated meta-data files into the target
execution environment. This can take the form of a Java archive (.jar) con-
taining all updated resources, else simply as files on disk, else as charac-
ter streams retrieved from a database.

2. The Software and its Installation

Software delivery format

The software is delivered within a single Java archive file (.jar), itself con-
tained within a zip file along with documentation and samples. The soft-
ware itself is optimized and compacted.
The jar is organized as follows:

ReverseXSL.jar
/META-INF MANIFEST.MF, etc. Standard Java archive meta data

/com
/reverseXSL java class files of the original rever-

seXSL software. Some source code is
also included for customisation.

/resources meta-data used by the reverseXSL software
/DEF Messages DEFinition files used by the

Parsing step.
/TABLES contains the Mapping Selection Table.
/XSLT XSL templates for the XSLT step.

/reference Schemas and specifications associated to the Transforma-
tion libraries included in resources (varies much with the
software delivery shipment at stake)

/samples Sample messages for test runs, copies of expected outputs

6 / 15

www.reverseXSL.com System requirements

A Java runtime environment (JRE) from version 1.4.2 or later (1.5, 1.6…)
must be already installed in the target computer systems.

These versions contain regular expression libraries and JAXP
(XSLT) libraries by construction, so nothing else particular is
therefore required.

Installation

Simply unzip the software distribution archive (reverseXSL.zip) to a direc-
tory of your choice (extract all files and preserve the relative directory hier-
archies) with a zip extractor (Winzip™, WinRAR™, or the one embedded
in MS-Windows™).
UNIX/LINUX users will prefer the Gzip’ped tar archive format available for
download from the web site.

Quick test runs

You can immediately execute the Transform Sample1/2/3 batch files.
The scrolling output mixes execution logs with the transformed message in
proper. If you edit the batch file to redirect the standard output stream to a
file, you capture the output message data. If you redirect the standard er-
ror stream to a file, you capture the logs.

The command line programs as supplied are just handy devel-
opment tools. You will want to customise them (source code is
inside the jar), or better, integrate the software into an applica-
tion environment via the API (cfr javadoc).

Classpath issues

To facilitate further works, the ReverseXSL.jar file can then be copied to a
directory elsewhere on the Java CLASSPATH, or this CLASSPATH must
be updated to include the full path name of the ReverseXSL.jar file.

Checking and editing the CLASSPATH is explained elsewhere
in Java documentation. You may also supply a "-classpath" (or
–cp ...") argument to every Java command line.
Software development workbenches like Eclipse™ or the
NetBeans™ IDE do supply local facilities to manage
CLASSPATH definitions per project; you may like (or need) to
adjust such definitions for the execution of the reverseXSL
software from inside the workbench.

If you decide to move the ReverseXSL.jar instead of copying it elsewhere,
the example transformation batch files may no longer work, as these con-
tain commands like:

java –jar ReverseXSL.jar myInputSampleFile

...that assume that the jar is in the local directory; but you can update them
into:

java com.reverseXSL.Transform myInputSampleFile

If you download the
Java runtime from
http://java.sun.com,
the JSE (Standard
Edition) bundle is
sufficient.

On Windows com-
mand line and UNIX
shell you redirect
the standard output
and error streams
by adding 1>out.txt
and 2>err.log at the
end of the com-
mand line.

TIP: within the Java
runtime directories,
there is a lib/ext
directory that is
designed to contain
runtime extensions.
Copy the Rever-
seXSL.jar there and
you have done.

7 / 15

www.reverseXSL.com The documentation

In the directory where you extracted the software, you will find the software
manuals in PDF format and the JavaDoc of the API (double-click or open
the file ./javadoc/index.html with an Internet browser).

The web site www.reverseXSL.com supplies tutorial samples and an ac-
celerated tutorial on 'regular expressions'.

License

The ReverseXSL parser is an Open Source software available under the
Apache 2.0 license.

Managing transformation resources

As shipped, the software archive does contain sample meta-data re-
sources (that drive transformations) within the .jar file itself. You may
add/replace by your own message definitions and XSL templates. Alterna-
tively, you may like to manage such meta-data in separate .jar files, and
separate it from the software in proper. In the later case, remove the
/reference and /samples directories from the original jar file, and move the
/resources to a separate jar file (or a regular directory) that you will place
on the CLASSPATH. The reverseXSL software will perform identically.

The exact way the reverseXSL software looks up for meta-data
resources is explained in the next section.

3. Operations

3.1 Transformer overview

With each new message that arrives, the reverseXSL Transformer exe-
cutes from 1 up to 3 different activities (see the figure on page 3 and be-
low):

1. A first step, using pattern recognition, matches a transformation profile
to the arbitrary input message. A transformation profile contains zero,
one, or both of the next two steps, plus optional message handling pa-
rameters.

2. The Parsing step is triggered (or not) according to the selected profile.
It decodes any structured character-data message and produces an
XML document.

3. The XSL Transformation step is triggered (or not) according to the se-
lected profile. It converts XML documents into other XML documents,
else flat file structures.

8 / 15

www.reverseXSL.com

Identify &
match a

transforma-
tion profile

(Parsing Step?
XSL step?)

IN
P

U
T

D
at

aCommuni
-cation
[out of
scope]

Parser:
EDI, flat files,
records, print

dumps,
etc.>>>XML

XSL Trans-
formation:

XML to XML
or XML to

EDI, flat file,
printable, etc.In

te
rm

ed
ia

te
 o

r
fin

al
XM

L
do

c'
t

O
U

TP
U

T
D

at
a

match… Text to XML XML to XML XMLTEXT
Typical Use for

INBOUND
processing

XML

match… XML to EDI EDIXML
Typical Use for

OUTBOUND
processing

XML

Message
DEF files

Mapping
Selection

Table

XSL
Templates

Meta Data

reverseXSL
'Tranformer ' API
(java)

Figure 2. The flow of data

Bytes or characters?

Although all internal software operations and the parsing step in particular
are based on characters, the Transformer actually takes a byte stream as
input and produces another byte stream as output.
These byte streams are read from and written to disk files (case of com-
mand-line operations), else passed as input/output stream arguments to
methods in the API.
The byte stream is decoded into a character stream according to a speci-
fied input character set. Similarly, the output character stream is returned
encoded as a byte stream according to a specified output character set.
The reason why the inputs/outputs are based on byte streams is fivefold:
 Preserving the ability to apply byte-oriented 'de-pollution' functions to

the input message before undertaking the identification and trans-
formation steps in proper

 Paving the way to software extensions in the area of envelope proc-
essing, where such envelopes can bear a byte-oriented design
and/or imply specific transfer encodings on a byte-oriented payload.

 Keeping the possibility for functional extensions into zip/unzip, or en-
crypt/decrypt before/after transformation, and similar functions work-
ing on bytes and not characters.

 Being more flexible with regard to the actual source/target of mes-
sage data: a buffer in memory, a sequential file on disk, a data
stream, a blob in a database.

 And, keeping control over an area which is a frequent source of miss-
handlings (taking bytes for characters, mixing multiple encodings, us-
ing java methods that perform implicit conversions, implementing
char-oriented operations on byte arrays, still assuming 8-bit charac-
ters, and so on).

Default input and
output char set is
UTF-8

9 / 15

www.reverseXSL.com Restrictive-listening versus automated mapping selections

Numerous third party integration platforms provide all means to assemble
and deploy sophisticated message processing chains, but each of these is
often capable to process only one type of input message. If a different
message enters through the exact same channel, it would likely be re-
jected as "bad format". For instance, reading message files from directo-
ries, different message types shall match different file name patterns so
that each brand is picked up by the one process that can handle it. This
restrictive-listening approach is even encouraged by the use of web ser-
vices. Each web service operation has an associated message type. Each
operation is handled as an event that triggers a specific process flow3,
thus handling the specific payload associated to the operation.
The reality, in particular in the context of electronic trading, is different: all
message are likely to arrive, in mixed-types, through the same communi-
cation channel (MQ-series, SMTP or AS1, HTTP or AS2, ebMS, sectorial
network connections like SWIFT or SITA, links to community systems,
etc.). The support of such mixed-types flows often implies the purchase of
additional third party 'EDI' modules such as to acquire the facility to sort
out which input message is of what type and trigger an adequate process
in each case.
The reverseXSL software can be integrated in both environments:

A. A Transformation can be invoked that enforces a specific Parsing
step, and/or a specific XSLT step. Whenever the input message does
not match the syntax implied by either the Parsing DEFinition, else
XSL template, exceptions arise.

B. On the other hand, one may simply invoke 'Transform' and delegate
to the software the selection of the one transformation profile that
matches the actual input brand.

The selection mechanism is dreadfully simple but appallingly efficient: up
to the first 1500 characters4 of the input message are presented, in se-
quence, to an ordered set of mapping selection entries. Each entry con-
tains a regular expression that is tentatively matched5. On the first match,
the entry is selected and the associated Parsing step and/or XSL Trans-
formation step are carried on.
Such Mapping Selection mechanism is suitable for small collections of
messages up to a hundred entries; performance will degrade with larger
sets. One must then either manage a few different Mapping Selection ta-
bles, each associated to a data exchange context, else use 'external'

3 or enters a suspended process instance, selected via correlation properties. Again, a specific
payload content is expected by the process that now resumes execution.
4 Characters, not bytes, hence implying that the source character set has been used for decoding
input bytes into characters. The value 1500 is a software build parameter. By experience, 1500 is
large enough for all headers the authors have encountered during the last 20 years…
5 Precisely, the pattern is searched within the first 1500 characters of each file. It shall match a
chunk of these 1500 bytes for a selection of the corresponding mapping table entry.

Restrictive-listening
mode

Mixed-types mode

10 / 15

www.reverseXSL.com means to determine a suitable profile and invoke the Transformer with the
specific parsing DEF and XSL template in this profile.

Combining the Parser with XSLT: doing none, one, or both

In the case B above (mixed-types), one can even mix XML and non-XML
inputs, and let the reverseXSL Transformer select the proper combination
of Parsing and XSL transformation applicable to each case. On the output
side, one can ensure a flow of neatly distinguished XML document types,
or even the production of a 'universal' XML document envelope inside
which the various payload types are wrapped.

Input (ALL TYPES MIXED) RXSL Parsing? XSLT?
non-XML yes:

any input syntax is
transformed to a
clean XML docu-
ment

yes or no:
as needed to reorder
and/or combine ele-
ments in the message,
else to match an im-
posed output schema

XML, whose schema is not
acceptable by the target

no yes:
transform such as to
match the imposed
output schema

XML, already compliant to a
supported target schema

no no:
as option, used for
XML schema validation

In all cases, when the reverseXSL Transformer has finished with the trans-
formation (in zero, one or two steps), the calling application may use the
myTransformer.getName() method to retrieve the name associated to the
mapping table entry that has been matched and executed. This name can
then be used to branch to diverse onward processing flows. Unique names
are not enforced in the Mapping Selection table.

3.2 Using the command line interface
We assume that the reverseXSL .jar file is available on the
CLASSPATH, cfr 'Installation' and 'Classpath issues' from pg 6.
If not, you can use an explicit –cp argument as in:

java –cp ReverseXSL.jar com.reverseXSL.Transform

Command-line Transformer
com.reverseXSL.Transform

This tool is a command-line wrapping of the Transformer API.
Execute the command alone to get help, as follows:

java com.reverseXSL.Transform

and, for more options,
java com.reverseXSL.Transform HELP

as described below.

The command line
tools are also con-
tained in the soft-
ware distribution jar.

11 / 15

www.reverseXSL.com 1. Simplest use, with a single jar containing software and transformation
meta-data (meta-data comprises Parsing DEFinitions, XSL templates,
and the mapping selection table)
Executed from the jar (does not require the jar to be on the classpath!):

java -jar ReverseXSL.jar myInputDataFile

Variant, executed from the CLASSPATH.
java com.reverseXSL.Transform myInputDataFile

In both above cases, meta-data resources are loaded from directories
and/or multiple jar's using the CLASSPATH6.

Precisely, the software first tries to load the file named re-

sources/TABLES/mapping_selection_table.txt else just
mapping_selection_table.txt (this is a fixed, built-in,
name) using the CLASSPATH, thus comprising the
ReverseXSL.jar contents itself. When found, it proceeds to
the mapping selection step in itself. If an entry matches
the input message, then the pathnames specified within
the selected mapping table entry are used to load the DEF
and/or XSL resources, again using the CLASSPATH. If
the mapping selection table is not found in the very first
step above, an I/O exception is thrown.

Both these command lines followed by >MyOutputFile

do capture the transformed result to a file; indeed, output is written on
standard output whereas execution logs are written on standard error.

2. Advanced use: enforce a parsing DEF and XSL Transformation:
java com.reverseXSL.Transform myDEFFile myXSLFile myInputDataFile

The Mapping Selection Table is ignored. The parser DEF file and the
XSL template file instruct to, respectively, parse the input with the as-
sociated Parsing DEFinition, and then transform the resulting XML with
the specified XSL template. If any of those two resources are not found
relative to the current working directory7, the corresponding transfor-
mation step is omitted (and indicated in logs).

Tip: simply use placeholder DEF or XSL arguments like 'NoDEF' and
'NoXSL' to skip the corresponding transformation step.

The same advanced command with all arguments looks like:
java com.reverseXSL.Transform myDefinitionFile myXSLFile

myInputDataFile [<InputCleansing> <MaxFatalExceptions>
<MaxExceptions> [<true|false> [<indent>]]]

where optional command-line arguments are noted within
'[' ']', possibly nested.

6 Classpath order defines the loading precedence.
7 The Classpath is therefore not used for loading meta-data resources.

Beware that variant
command line
forms exhibit differ-
ent policies for
searching and load-
ing meta-data re-
sources.

The variant com-
mand line options
and arguments are
all features of the
Transform com-
mand line applica-
tion, itself wrapped
around the Trans-
former API. The
source code is sup-
plied in the jar. So if
you do not like the
command line inter-
face, create one
that matches your
style and require-
ments.

12 / 15

www.reverseXSL.com The <InputCleansing> is one of NONE, ToCRLF, ToLF, ToUPPER,
FullyTrimmed, or UnfoldPSCRMRemarks. You may combine multiple
cleansing options with a '+' as in ToCRLF+fullytrimmed+TOUPPER. To-
kens are not case sensitive. FullyTrimmed removes leading & trail-
ing spaces/tabs, as well as empty lines and control characters
(more options via the java API). UnfoldPSCRMRemarks removes the
arbitrary '<CR><LF>.RN/' remarks-extension-line-breaks that can
jeopardize the correct parsing of Remarks elements in IATA
PSCRM messages (a legacy feature inherited from TELEX maxi-
mum line length at 69 chars).

 <MaxExceptions> & <MaxFatalExceptions> are integers that define
the Parser exception recovery thresholds. Cfr the manual about
Message DEFinition Files, else the javadoc.

 The <true/false> argument is one of true or false (ignoring case)
and tells to removeNonRepeatableNilOptionalElements. Please re-
fer to the manual about Message DEFinition Files for an explana-
tion of this option.

 The <indent> string instructs to produce printable transformed out-
puts with the given indentation pattern. Try " |" and you'll see the
effect!

3. Advanced use for Test automation:
java com.reverseXSL.Transform AUTO SELECT myInputDataFile

[<InputCleansing> <MaxFatalExceptions> <MaxExceptions>
[<true|false> [<indent>]]]

In which case a file named mapping_selection_table.txt (fixed name) is
searched up in the directory hierarchy8 such as to dynamically resolve
which parsing DEF and/or XSL template to apply to the given input da-
ta.

Precisely, the Classpath is not used to load the mapping
selection table. When found, it proceeds to the mapping
selection step in itself. If an entry matches the input mes-
sage, then the pathnames specified within the selected
mapping table entry are used to load the DEF and/or XSL
resources by first trying to load them from the Classpath
and second, trying to load them relative to the directory in
which the mapping selection table file was found.

Note that the output is always written on stdout whereas execution mes-
sages and logs are written on stderr; the transformed output is thus cap-
tured using command-line output redirection. For instance:

java -jar ReverseXSL.jar myInputDataFile >myOutputFile

8 starting from the current working directory, which you can configure to any directory of choice
when executed from development workbenches

This one variant is
quite useful to au-
tomate testing while
developing new
transformations
because you can
take advantage
from the directory
hierarchies in the
workspace in order
to manage global
(consolidated) and
local (specific to
one or a few mes-
sages) mapping
selection tables.

13 / 15

www.reverseXSL.com In addition, when there are Parsing errors, a report about each error is
added to execution logs generated by the Transformer.

Command-line Parser

com.reverseXSL.Parse

This tool is a command-line wrapping of the Parser API. The Parser is a
subset of the Transformer. Parsing comes second in the set of 3 opera-
tions executed by the Transformer: a mapping decision, an optional Pars-
ing step, an optional XSL Transformation step.
The command-line Parser is very convenient during the development of
new non-XML message DEFinitions. Indeed, one can get a detailed dump
of the Parser state next to both successful and non-successful parsing.
The dump supplies quite useful information about all the pieces that were
actually identified in the input message, and how they were cut, and how
the conditions were fed during the parsing.
Execute the command alone to get help, as follows:

java com.reverseXSL.Parse

We assume, in this command and the following that you have placed
the ReverseXSL.jar on the CLASSPATH, else use an explicit –cp
argument as in:

java –cp ReverseXSL.jar com.reverseXSL.Parse

1. Simple use
Executed with the ReverseXSL.jar on the CLASSPATH:

java com.reverseXSL.Parse myDefinitionFile myInputDataFile

Such command line outputs both the Parser state dump and the gen-
erated XML document. It is a good idea to follow it by 1>MyOutputFile

and/or 2>MyLogFile in order to capture the transformed result to a file,
or the logs to a file, respectively; indeed, output is written on the stand-
ard output stream whereas execution logs are written on the standard
error stream.
For instance, if you open the ReverseXSL.jar file itself with a zip extrac-
tor and extract the sample DEF file FWB15.def, you can execute:

java com.reverseXSL.Parse FWB15.def Sample2_TypeB_FWB.txt 2>logs.txt

2. Test automation
Executed with the ReverseXSL.jar on the CLASSPATH:

java com.reverseXSL.Parse myDefinitionFile myToken

Where myToken is a keyword found in the DEFinition file itself that indi-
rectly supplies the file name, alike in those lines:

#ONE=TypeB_FWB_01.txt;

If you get a No
Class Def Found
error, add the
classpath argument
to the java com-
mand line with the
complete path to
the ReverseXSL.jar
file.

14 / 15

www.reverseXSL.com #TWO=TypeB_FWB_02b.txt;

Defining two possible tokens: “ONE” and “TWO”.
This facility allows keeping unit-test file names within the DEF files
themselves, while at the same time tokens may bear the same series
of names across all message DEFinitions, which is very convenient in
automating regression tests.

3. Additional options
Executed with the ReverseXSL.jar on the CLASSPATH:

Java com.reverseXSL.Parse myDefinitionFile myInputDataFile
<MaxFatalExceptions> <MaxExceptions> <true|false>

This command line features all possible arguments, namely:

MaxFatalExceptions is a number that fixes the tolerance of the
Parser to fatal exceptions.

MaxExceptions is a number that fixes the tolerance tolerance of
the Parser to the overall count of exceptions (fatal and warnings).

true|false indicates whether the Parser shall remove non-
repeating nil optional elements from the XML output or not (default
is false).

4. Generate a sample output XML document
Assuming the ReverseXSL.jar on the CLASSPATH:

Java com.reverseXSL.Parse myDefinitionFile

When executed with just a DEF file argument, the Parser generates a
dummy sample message with all data element descriptions as data
values. This is a convenient means of documenting the generated XML
output.

3.3 Using the Transformer API in Java

The use of the Transformer is extremely simple.
It is best illustrated through the following sample code. It takes only 3 ef-
fective lines of Java code to run a transformation.

//references to TransformerFactory and Transformer classes
// in the sample code below are NOT from the package
//javax.xml.transform but from com.reverseXSL.transform !
import com.reverseXSL.transform.Transformer;
import com.reverseXSL.transform.TransformerFactory;
...
try {

//you must catch exceptions, as any failure to transform
//the input message results in an exception. No exception
//means OK.

//1. Get a default transformer factory with:
TransformerFactory tf = TransformerFactory.newInstance();

//That one will use all meta-data resources embedded

These three Pars-
ing options are
explained in the
documentation on
Message Definition
files.

This command will
also generate the
schema of the out-
put XML in a forth-
coming release.

Please refer to the
documentation of all
methods of the
TransformerFactory
and Transformer
classes in the
JavaDoc (included
in the software dis-
tribution jar).

15 / 15

www.reverseXSL.com //in the main jar file, else on the classpath.
//Alternative factory methods support variant
//sources of meta-data.

//2. Instantiate a transformer:
Transformer t = tf.newTransformer();

//Use an Input Stream and an Output Stream of whatever
//type for your input message and generated output:
//Byte Array, File or else
ByteArrayInputStream inStream = new

ByteArrayInputStream(myInputMessage);
ByteArrayOutputStream outStream =

new ByteArrayOutputStream();

//3. Execute the transformation
int parserWarnings = t.transform(inStream,outStream);
//DONE! just take the transformed message from the output
//stream. For instance, to dump it out:
outStream.close();
System.out.println(outStream.toString());

//The parser, when invoked in the transformation, is able
// to tolerate minor message syntax deviations (this is
// entirely parametrizable) up to given thresholds (set
// via the factory API). The integer that is returned
// tells how many syntax violations were actually
// detected with a count still below thresholds: by
// default, 10 warnings are accepted, and zero major
// error.

//You may be interested in execution logs:
StringBuffer sb = t.getLog();
//and, to iterate over all recorded Parser exceptions,
ListIterator li = t.getParserExceptionListIterator();

} catch (Exception e) {
//put your exception handling code here.
//The exceptions caught here relate to:
// - an exceeding count of Parser exceptions (cfr
// Parser tolerance and exception thresholds)
// - I/O Exceptions
// - XSL Transformation exceptions

}

* * *

