
RX Message DEFinition files.docx

updates available from:
www.reverseXSL.com

Copyright
Art of e.biz
(except for the
APPENDIX)

The reverseXSL Transformer
Message DEFinition Files
V2.0 May09 web release
V2.1 Apr12 Now as Open Source

Foreword
This document describes the DEF file format used by the reverseXSL Parser component. It
describes how to define the syntax and structure of any character-based message, and ex-
plains how the transformation to XML can be controlled.

Table of Contents
1. What You Should Know ___ 3
2. Design Principles __ 4
3. Operations __ 7
3.1 TRANSFORMER OVERVIEW __7

4. DEF File Structure__ 9
4.1 GENERAL LAYOUT __9
4.2 WHAT IS A SEGMENT (NOTED SEG)? ___10
4.3 WHAT IS A GROUP (NOTED GRP)? ___11
4.4 WHAT IS A DATA ELEMENT (NOTED D)? __12
4.5 WHAT IS A NAMED CONDITION (NOTED COND)? _________________________________13
4.6 WHAT IS A MARK (NOTED MARK)?__15
4.7 WHAT IS THE EFFECT OF MIN/MAX & ACCEPT LOOP COUNTS?________________________16
4.8 HOW IS DATA ACTUALLY SEPARATED FROM THE MESSAGE'S SYNTAX? ________________18
4.9 DELIMITER OR DATA? USING A RELEASE CHAR ___________________________________22
4.10 USING RESERVED XML TAGS: NOTAG, RAW AND SKIP___________________________23
4.11 USING THE RESERVED NULL VALUE___25
4.12 EXCEPTION HANDLING __25

5. DEF File Line Formats ___ 27
5.1 SEG (SEGMENT) DEFINITIONS __27
5.2 D (DATA ELEMENT) DEFINITIONS __30
5.3 GRP (GROUP) DEFINITIONS __32
5.4 MSG & END DEFINITIONS___33
5.5 COND DEFINITIONS __33
5.6 MARK DEFINITIONS ___34
5.7 COMMENTS___35

6. Namespaces (SET BASENAMESPACE) _________________________________ 36
7. Advanced Questions___ 38
8. Sample Program Code ___ 48
9. Command Line Tools __ 50
10. Philosophical Considerations ___ 51
11. Known Issues and Limitations __ 55
12. APPENDIX: Regular Expressions ______________________________________ 59

2 / 64

www.reverseXSL.com
Formally…

ReverseXSL.com is a trademark of Art of e.Biz, an inde-
pendent software editor with registered offices in Belgium.
The present document is not contractual and does not
bind Art of e.Biz to meet the functions and features as ex-
actly described in the present document. Although care as
been taken to reflect to the best extent possible the design
and features of the product described herewith, Art of
e.Biz reserves the right to modify the enclosed descrip-
tions without notice.

Art of e.Biz disclaims any explicit or implied warranties or
fitness for purpose. The company and the author(s) of the
present document will not be liable for any loss of profit or
any other commercial damage.

Product names, logos, brands, and other trademarks
cited, featured, or referred to within the present document
and all associated materials, do remain the property of the
respective trademark holders.
These trademark holders are not affiliated with Rever-
seXSL.com or Art of e.Biz, neither the related products,
nor the website. They do not sponsor or endorse our ma-
terials.

No part of this document can be copied or reproduced or
transmitted in any form and by any means without the
permission of the respective authors or its copyright own-
ers except within the scope of the reverseXSL Open-
source Licensing Agreement which is Apache 2.0 .

3 / 64

www.reverseXSL.com 1. What You Should Know
We strive to provide you with the best documentation available. There's
hardly anything more frustrating than starting to lose time by the lack of
proper information.
This manual describes only one piece of meta-data within the reverseXSL
Transformation software. We advise you to start your journey to the docu-
mentation from the web site www.reverseXSL.com > documentation, if not
already the case.

Figure 1. reverseXSL software components

Prerequisites:

 An understanding of regular expressions is a must, and in particular
the use of capturing groups in regular expressions. Don't try to
guess their meanings and behaviour, but learn carefully the meaning
of the following 11 special characters . * + ? ([\ { ^ \ and | (plus of
course the closing)] }). You will save yourself from a lot of frustra-
tion, spare much time, and possibly begin to grasp their magical
power. We provide a set of links below to help with learning.

 An understanding of the message formats that you have to process
is also a must, whether these are application-specific, corporate con-
ventions, or EDI standards. It may seem stupidly obvious to raise the
point, but again, we'd like to raise the importance of knowing pre-
cisely the syntax variations and dependency conditions in the mes-
sage structures at stake in order to formalize efficiently the parsing.
Every printable or control character that can occur in a message has
to be either explicitly matched, or explicitly ignored. There is no im-
plicit behaviour because that would imply the possibility of silently
missing information!
We endeavour to document samples from as many formats as pos-
sible on the web site.

XML
< />

T

Transformer
Std API

ransform

API

Parser

API

any
Txt

XML
< />

XML
< />

any
Txt

XML
< />

Command line or API interface

Decision
table

DEF
file

XSL tem
-plate

The present docu-
ment is reference
material. Tutorials,
samples, trial exer-
cises as well as
overviews are ex-
clusively published
at the web site.

Regular expres-
sions are found in
numerous computer
languages and
scripts. We use the
implementation
made available in
Java runtimes since
version 1.4, itself
inherited from the
UNIX egrep and
sed shell com-
mands.

The present
document de-
scribes only
this piece

4 / 64

www.reverseXSL.com  Third requirement? You should know about XML and XSLT of
course; if you read this documentation and evaluate the reverseXSL
software, there's a very high chance that this is already the case, or
that it will soon be…

With the above, you are ready to go.
Useful links:
The one-hour Regex tutorial at www.reverseXSL.com.

Dedicated to the quickest start with the reverseXSL Parser.

http://docs.oracle.com/javase/tutorial/essential/regex/
Regular Expressions and the Java Programming Language.

2. Design Principles
This section is fairly formal. As evoked above, this document is a
reference manual. Feel free to skip it during a first reading.

As it should be, we formalized requirements before writing the software.
Although we could have archived today this section, we decided to pre-
serve and even maintain it, because it is quite efficient in deciding whether
this software can meet your own requirements or not.

[1] A DEF file is by design a one-way description of an inbound mes-
sage structure (character-based data, printable or not) and of its
transformation into a canonical XML representation. A DEF file
cannot be used to map back an XML into its original syntax.

[2] The class of messages that the software can parse shall encom-
pass all character-based data interchange standards and de-facto
formats. Precisely, any message which can be interpreted by drill-
ing down into hierarchically nested and sequentially concatenated
structures, possibly mixing fixed size and delimited fields in any or-
der. Delimiters can be implicit, alike in a numerical to alphabetical
transition for instance. Delimiters at any point can themselves be
variable, and belong to a range of possibilities. The correct Interpre-
tation of data can mix multiple techniques: explicit tagging, pattern-
based, positional, inter-dependent from other element values or
structures, and of course context-sensitive (i.e. depending from the
whole sequence of already parsed elements). Formally, this is the
class of left-to-right scanning context-sensitive grammars from the
theory of formal languages.

[3] The handling of binary-coded message syntaxes and/or with binary
data representations, like based on ASN.1 for instance, falls out of
scope.

[4] The reverse transformation from XML to text-based documents
shall be performed by XSLT transformations.

5 / 64

www.reverseXSL.com [5] A DEF file contains enough information to completely validate the
syntax of an inbound message.

[6] The DEF file has itself a structure and syntax that privilege the use
of a plain text editor (Wordpad, vi, text editors embedded in collabo-
rative development workbenches like Eclipse, StylusStudio,
XMLSpy, etc.), with a concern for compact editing. Hence, it was
decided that a DEF file is not defined as an XML document itself
(alike XSL templates for XSLT). In addition, a DEF file contains nu-
merous regular expressions that would require the use of quoting
transcripts (e.g. &) if used in XML, further making the regular
expressions more cryptic than necessary and forcing to develop a
custom editor.

[7] A DEF file is self-containing, autonomous and linear1. This require-
ment was guided both by efficiency considerations, and operational
constraints. There is no provision (other than cut-and-paste editing)
to share segment definitions or groups from a library of standard
segments for instance and re-use them in many DEF files, or sev-
eral times within the same DEF file. Such facilities will be offered, if
any, by a DEF file-editing environment that in turn, will compile
autonomous linear DEF files as described here, from various re-
usable objects.

[8] A DEF file matches the definition of one and only one message.
Shall multiple messages follow each other within a single 'big' file or
within the data portion of a communication protocol data unit, other
external functions are required to slice such big file or data into the
individual 'messages'. Those functions are not covered by this
specification. As a consequence and in the present context, any
data characters left after the declared2 message END will yield an
error.

[9] Inter-dependency conditions between data-elements and/or com-
plete segments or groups are supported but only for the validation
of existence/non-existence dependencies, possibly linked to some
coded element combinations. Other dependencies based on nu-
merical comparisons between two elements, or date comparisons,
or the verification of an addition, shall be implemented by the end
applications.

[10] The proposed solution does not validate control values like the total
count of segments in the message versus a control count. This shall
be implemented in header/enveloping processing.

[11] The parsing may continue after the first (or any number) of errors
encountered. Exceptions (errors) are either Recorded or Thrown.
Whether to record or throw an exception is indicated with every

1 No section of the file does require navigating to several other places in the file to fully understand
its meaning. Every definition is fully specified at the place where it is defined; sequentially, from
begin to end.
2 One may declare extra segments to accept garbage data as explained later on. This must be
explicit. This rule tells that there's no implicit acceptance of extra characters.

An XML representa-
tion for a DEF file is
announced, such as
to extend automa-
tion facilities like
XML schema gen-
eration.

An 'include' state-
ment is announced
in a forthcoming
release.

6 / 64

www.reverseXSL.com condition in the message definition. The maximum number of ac-
ceptable exceptions (after which any additional exception will be
thrown) is passed as argument to the parser.

[12] In addition to the above, exceptions can be classified into Fatal and
Warning exceptions. Hence one can specify a maximum number of
recorded fatal exceptions, or of total recorded exceptions. A limit on
the number of recorded warning exceptions alone does not make
sense, because a fatal case is at least warning!

[13] There's no mean to deal with legacy EDI escape character se-
quences in the parser itself (e.g. "?+" in EDIFACT for a literal "+"
character). The replacement of conflicting characters (or sub-
strings) in data values shall be performed before calling the parser.
For instance, removing character-escape sequences and replacing
all separators by control characters (e.g. in EDIFACT using charac-
ter codes IS1, IS3, IS4 as officially defined), or any other combina-
tion of pre/post mappings.

[14] One shall also not forget that the XML character set is quite restric-
tive. The use of XML escape-sequences (& > < etc.) and
then the encoding of data element values that will be mapped into
the target XML document is delegated to the Parser itself, at the
point of rendering in XML a copy of its internal message element
tree. XML encodings are therefore automatically applied as needed.

[15] The parser is using internally the UNICODE character set3. All
string handlings are based on character counts and not byte counts.
The encoding from ASCII (or UTF-8 or else) to UNICODE, or from
UNICODE to ASCII (or other) is performed externally to the parser
component in proper (see the upper level Transformer and Trans-
formerFactory for relevant facilities).

[16] The target XML document is always a 'simple' XML: by definition,
generated documents contain a strict hierarchy of elements. Any
element can bear attributes. Each element contains only ordered
sequences of sub-elements, or (exclusively) textual data. There are
no mixes of character data and child-elements within the same par-
ent element (as in <E1>some data<E2>more data</E2></E1>), al-
though fully allowed by XML standards. Moreover, no use is made
of processing instructions, references, or inclusions.

[17] All XML document elements are qualified with a namespace. They
are generated by reference to a single target base namespace,
possibly extended into various derived namespaces throughout the
document, but all sharing a common root or base which is set per
message. On the other hand, attribute names are never qualified.

[18] The software preserves the ability to generate an XML document
with no namespace at all.

3 The low part of Row 0 of the UNICODE BMP is the ASCII character set, i.e. all 7-bit character
codes.

Forthcoming 'enve-
lope processing'
functionality will do
the job in a future
release.

7 / 64

www.reverseXSL.com

3. Operations

3.1 Transformer Overview
The Parser is only one component within the reverseXSL Transformer
(see the figure on page 2 and below). The Transformer handles a mes-
sage in three steps:

1. A first step, using pattern recognition, matches a transformation profile
to an arbitrary input message. A transformation profile contains zero,
one, or both of the next two steps, with additional optional message
handling parameters.

2. The Parsing step is triggered according to the selected profile. It de-
codes any structured character-data message and produces an XML
document.

3. The XSL Transformation step is triggered according to the selected
profile. It converts XML documents into other XML documents, else flat
file structures.

Figure 2. The flow of data

Although all internal software operations and the parsing step in particular
are based on characters, the Transformer actually takes a byte stream as
input and produces another byte stream as output. Input and output char-
acter sets that govern the conversion from bytes to chars and vice-versa
are specified at the level of the TransformerFactory.
As far as the Parser is concerned, every API function handles only charac-
ters.

Parser operations
The present document focuses exclusively on the Parsing step.

Identify &
match a

transforma-
tion profile

(Parsing Step?
XSL step?)

IN
P

U
T

D
at

aCommuni
-cation
[out of
scope]

Parser:
EDI, flat files,
records, print

dumps,
etc.>>>XML

XSL Trans-
formation:

XML to XML
or XML to

EDI, flat file,
printable, etc.In

te
rm

ed
ia

te
 o

r
fin

al
XM

L
do

c'
t

O
U

TP
U

T
D

at
a

match… Text to XML XML to XML XMLTEXT
Typical Use for

INBOUND
processing

XML

match… XML to EDI EDIXML
Typical Use for

OUTBOUND
processing

XML

Message
DEF files

Mapping
Selection

Table

XSL
Templates

Meta Data

reverseXSL
'Tranformer ' API
(java)

8 / 64

www.reverseXSL.com The Parser can be used as a standalone component, although it is most
useful when combined to XSLT within the Transformer.
In the present version, the Parser handles the complete message in mem-
ory. This may pose a problem with very-very large messages, although not
as much critical today with recent system as it could have been in the past
when memory was still scarce and expensive.
The implementation which was highly recursive in the beginning has been
moved for a part to a state machine model in order to consume much less
heap space. The consumption is now proportional to the maximum ele-
ment depth in the message. Regular expression processing is another
potential source of memory consumption; poorly formulated expressions
(with for instance a repeated pattern that can match zero length literals)
can actually eat much heap space.
The parser always executes the following 6 activities in sequence.

1. Load the given message definition: the so-called DEF file whose syntax
is specified further in the present document.

2. Segment the message and decode the syntax. As the parsing itself
proceeds, the extracted data is mapped into an internal hierarchical
collection of elements. Looping structures can be promoted (i.e. creat-
ing additional nesting levels) or demoted (flattened), individual ele-
ments are added or removed, everything can be tagged and untagged
at will, but the order of data element values from the original message
is strictly preserved.

3. Once the parsing is complete, verify occurrence-loop constraints
(min/max thresholds)

4. Next, verify all inter-dependencies (described as 'named conditions'
further)

5. Render, on demand, the internal tree of data elements into an XML
document, or dump it in debug traces.

6. Report exceptions, on demand, and as applicable

For software opti-
mization reasons,
the maximum mes-
sage depth is a
software build pa-
rameter. It is pres-
ently set to 20. The
most complex for-
mats handled so far
reached a depth of
12.The parameter
can be increased if
ever needed.

9 / 64

www.reverseXSL.com 4. DEF File Structure

4.1 General Layout
A DEF file has the following general layout:

SET BASENAMESPACE "namespace" [SIGN.ATUR.E999.999] optional

COND … specification of inter-dependency rules (conditions)
COND …

… more COND lines

Comments may be written elsewhere; by convention, these are lines starting
with a ' '(space) or tab character.

MSG The top level segment is the message itself and is level 0 by definition
The top level segment is noted MSG instead of SEG, although it is a
SEGment

|SEG first segment at level 1 with a single data piece
||D data and other segments here are at level 2, hence prefixed ||
|SEG second segment with 4 data pieces
||D first data element
||D second data element
||SEG the third data element is a "sub-segment", i.e. a composite
|||D first sub-element
|||D second sub-element
||D fourth data element, back to level 2
|SEG third segment within the top-level segment, i.e. at level 1
||D
||D
|MARK evaluates a condition on the fly and marks it at this point in the mes-

sage
|GRP first group at level 1, a group is only a logical grouping of segments or

other groups that are then—by principle—at the next level
||SEG a segment at level 2, first within the group
|||D
|||D
||GRP a sub-group at level 2 within the level 1 group
|||D Data elements may be placed directly in groups as well
|||SEG a segment at level 3 within the previous level 2 group
||||SEG a sub-segment, then at level 4
|||| etc… the rest of level 4 shall contain data and sub-segments, and

sub-segments may again contain segments and groups!
|||SEG
||SEG back to level 2, hence next to the previous group
||GRP …more groups, etc…
END marks the end of the message definition

The DEF file contains an optional SET BASENAMESPACE statement,
followed by a 'Named Conditions' block, followed by the MSG—END block
that describes the hierarchical message structure. Conditions are also op-
tional but there's seldom any real-world message definition without some.

The '|' characters
are actually part of
the syntax of the
DEF file itself, and
do control the nest-
ing of definitions.

There are only six
concepts to under-
stand: SEGments,
GRouPs, Data,
MARKs and CON-
Ditions. That is all
the magic!

10 / 64

www.reverseXSL.com 4.2 What is a Segment (noted SEG)?
Example:

||| SEG "^4:" Text M 1 1 ACC 1 R F "swTB Text Block" CUT-ON-NL

segm
ent depth is 3

identifi-
cation
pattern
(starting
with "4"
followed
by a
semi
colon)

XML
tag is

<Text>

Mandatory
1 min (specs)
1 max (specs)
ACCept 1 in

practice

R
ecord exceptions

Fatal im
pact of errors

reference and
description

The CUT pat-
tern is here a
simple built-in
function that
cuts on new
line bounda-
ries

A segment is the definition for a string of characters from the original
input message that gets cut into smaller strings. In other words, a seg-
ment is used to cut sub-strings out of the syntax of the segment-string it-
self.
A segment always corresponds to a physical portion of the input message
and corresponds altogether to the enclosed data elements and the asso-
ciated framing syntax (tags, separators, terminators).
The top-level segment—by convention at level 0—is always the whole
message itself.
A segment contains by definition:
 An identification pattern that is used to identify the segment;
 A cutting pattern or a built-in function to split the segment into smaller

strings. The cutting logic is driven by capturing groups in regular ex-
pressions; see explanations further.

A segment may be associated to an XML tag (or NOTAG or RAW or SKIP)
A segment may be:
 Mandatory, in which case the failure to match the identification pat-

tern throws/records an exception
 Optional, in which case the failure to match the identification pattern

is interpreted as the absence of the segment
 Conditional, in which case the constraint is similar to the Optional

case, but the absence or presence is now reported to a named con-
dition.

A segment may bear minimum, maximum and accept loop counts that
drive looping logic in addition of being special kinds of conditions. They
are combined with the Mandatory / Optional and Conditional (M/O/C) key-
words. Further explanations will be found below.
A Mandatory or Optional Segment contains a description that will be at-
tached to the exception thrown/recorded in case of violation of the manda-
tory or optional constraints, and with invalid loop counts. The description
that is associated to Conditional rule violations is defined in the named
condition statement.

A segment at depth
3 is always followed
by one or more sub-
segments, data
elements or sub-
groups at depth 4,
thus defining its
child elements

A segment is …
segmenting input…

Both the match with
the identification
pattern AND the
cutting AND sub-
element matching
(of at least one
piece) shall be OK
for a segment to be
considered "found".

A segment may
contain data ele-
ments, groups, and
sub-segments.

11 / 64

www.reverseXSL.com A segment also bears an indicator whether to actually Record or to Throw
any exception.
A segment may optional specify a namespace suffix, that is combined to
the base namespace to form a namespace URI, which applies to this
segment element and becomes the default namespace URI for all children
elements.

4.3 What is a Group (noted GRP)?
Example:

|| GRP "^:50[CL]" IParty O 0 1 ACC 2 R W "sw50CL Instr.Party" /Parties

group depth is 2

identifi-
cation
pattern
(starting
by a semi
colon
followed
by "50C"
or "50L")

XML tag
is

<IParty>

Optional
0 min

(specs)
1 max

(specs)
ACCept 2

in prac-
tice

R
ecord exceptions

W
arning

in case
of errors

reference and de-
scription

a suffix to the
base name-
space URI for
this element
and child
ones

A group is pure virtual structure used to bind an arbitrary collection of
segments, data elements, and (sub-)groups into a kind of association.
It is only a structural concept. It is used to associate conditions or tags
to a group of segments (and data elements and sub-groups) instead of
isolated segments, and to specify loop boundaries applicable to the rele-
vant group of segments (and data elements and sub-groups).
A group has no syntax element of the input message associated to the
group structure itself. It does exist only indirectly from the collection of
underlying segments. A group can contain a single segment (with no tag) if
so desired to associate some syntax framing to the group itself.
The use of a group has a fivefold effect:
 It is always a depth-level break; precisely, all direct group members

are by definition down one nesting level.
 If any of the group members exist, the group itself will exist and may

introduce a corresponding 'group' tag (an XML element name of type
complex: sequence) into the output XML document

 A group can repeat and therefore define looping constructs than
span over more than one segment.

 The group associates a Mandatory / Optional or Conditional con-
straint to its members as a whole, with possible min/max loop counts

 A specific description can be associated to a group.
A group may bear an identification pattern. This is never a requirement,
but just a facility to immediately enter or skip a group structure (according
to the match/non-match outcome) such as to speed up parsing. The use of
a group identification pattern can become the origin of an exception, and
thus the associated description may differ from the case the identification

A group at depth 2
is always followed
by one or more
segments, data
elements or sub-
groups at depth 3,
thus defining its
members (to be-
come child nodes in
XML)

A group may con-
tain data elements,
segments and sub-
groups in any quan-
tity, in any order.

12 / 64

www.reverseXSL.com pattern would not have been used at the group level but indirectly at the
nested-segment or nested-data element level.
A group has Min, Max and Accept loop counts alike a segment, and a
Mandatory, or an Optional, or a Conditional marker.
Like a segment, a group may optional specify a namespace suffix, that is
combined to the base namespace to form a namespace URI, which ap-
plies to this group element and becomes the default namespace URI for all
children elements.
Note: the Message itself as a whole is not a top-level group, but a
top-level segment.

4.4 What is a Data Element (noted D)?
Example:

|||| D "^:50C:(.*)" BEI M 0 1 ACC 1 T F "sw50C BEI code" ALPHANUM [1..11]

data elem
ent at depth 4

matching
and extrac-
tion pattern
e.g. "987A"
will be ex-
tracted out
of
":50C:987A"

XML
tag is
<BEI>

Mandatory
0 min (indi-

cates op-
tional in
specs!)

1 max
(specs)

ACCept 1 in
practice

Throw
exceptions

Fatal im
pactof errors

reference and
description

validation pattern,
here a built-in
function
Alphanumericals
expected from 1 to
11 chars

A data element is a special instance of a segment that contains only one
sub-string. In other words, the cutting process bound to segments stops
with data elements. Data elements can only have the effect or removing
syntax characters from the original string. A data element yields always
one single piece of data that will always fill one text node or one at-
tribute node of one simple XML element (i.e. with no children in case of
a text node).
Unlike a segment, a data element is not associated to an identification
pattern plus a cutting pattern, but bears instead a validation pattern. The
validation pattern is also used as data value extraction pattern (the asso-
ciated regular expression must contain at least one 'capturing group'; see
explanations further).
Alike a segment, a data element will bear:
 An XML tag for the target XML element to fill up (NOTAG, RAW and

SKIP are reserved names described further). If the tag name starts
with '@', this element will become an attribute of the parent element

 Mandatory / Optional and Conditional (M/O/C) constraints with ad-
justed effects as follows:

o Mandatory: the element value cannot be empty. The failure
to match the validation pattern always throws/records an ex-
ception.

13 / 64

www.reverseXSL.com o Optional: the whole element can be empty, or the element
value alone can be empty4. If there are any characters, the
failure to match the validation pattern throws/records an ex-
ception.

o Conditional: the constraint is similar to the Optional case, but
the absence or presence of the element value is in addition
reported to a named condition.

 An element may also bear minimum, maximum and accept loop
counts in combination with the Mandatory / Optional and Conditional
(M/O/C) keywords. Further explanations will be found below.

 A Mandatory or Optional Data element also contains a description.

4.5 What is a Named Condition (noted
COND)?
Example:

COND "[FAL]" DEPTH 1 R W " Application ID! must be one of F A or L"

matching
pattern to
verify the
condition
(condition
feeds must
yield one
of "F", "A"
or "L")

verification is
performed at
depth 1, i.e.
for each
individual
message
(possibly
repeating).
Depth 0 is
the whole file

R
ecord exceptions

W
arning

in case
of errors

reference with error message when verifi-
cation of the condition fails

Conditions are by convention listed at the top of the DEF file, above the
message definition itself and next to the optional SET BASENAMESPACE
statement.
Conditions express interdependencies between data elements, segments,
groups or anything else.
Conditions can either be:
 Global, in which case the condition shall be valid once for the whole

message, whatever the levels and repetition counts from which the
dependent elements may come

 Local, in which case the condition shall be met for every instance of a
specified depth level and the enclosed sub-levels.

For instance, a group repeats at depth 2 and contains segments
and data elements affected by inter-dependencies that respectively
occur at depth 3, 4 and 5. A Local condition depth 2 will test for the
inter-dependency condition to apply within every repetition of the
group at depth 2.
It does mean that a Global condition is a Local condition at depth 0.

4 Note that a non-null element may happen to only contain syntax characters, i.e. separators and
other stuffing or padding characters.

Unlike segments
and groups, a data
element definition
cannot specify a
new suffix to the
base namespace. It
will automatically
inherit that of the
parent segment or
group.

14 / 64

www.reverseXSL.com Conditions are denoted 'named conditions' because the condition name is
used to link all the inter-dependent elements.
Named conditions are verified only after the complete parsing of the
message. The data for verifying a condition is collected while parsing the
input message, but the verification itself and any throwing/recording of ex-
ception occurs only at the end.
Named Conditions are listed at the beginning of the DEF file because the
loading of such conditions do trigger the internal creation of objects that
record the condition feeds during the entire parsing. Ultimately all col-
lected condition feeds are organized per nesting level and loop boundary,
and matched against the condition itself.
The definition of a named condition contains:
 An indication of the depth level at which the condition must be veri-

fied. (see above)
 A matching pattern that shall be verified for the condition to hold true,

see the mechanism below.
 An associated description of the exception to throw/record in case

the verification fails.
How inter-dependency conditions are verified?
Conditions are verified using pattern-matching logic. The data feeding this
matching process is constituted from string elements—called tokens—
collected during the parsing of the message. The tokens can be arbitrary
string constants, else (portions of) data element values. Each time a
group, segment or data element is declared as Conditional, a specified
string (another pattern which yields a constant or specifies a capturing
group) is added to the named condition collection of tokens. The loop
counts for every nesting level are added as attributes, as well as original
element references and offsets in the message. When the parsing of the
message is completed, each condition is then evaluated. The depth/scope
level instructs how to proceed with the grouping of collected tokens (actu-
ally pieces of text string) and proceed with pattern matching against the
concatenated string result. Any depth/scope above 0 do cause the verifi-
cation process to loop at that one level.
The careful selection of string constants combined to the flexibility of pat-
terns allows matching about every inter-dependency constraint.
A straight inventory of all expected keyword combinations separated by '|'
(OR logic) in a regular expression would do the job in most cases.
Important note: when no tokens at all were collected under a given
name during the parsing, the associated named condition is not
checked. In fact, a named condition may often express interdependencies
in between a few data elements, and all of them may be contained in an
optional structure. Checking that the relevant condition would accept, in
this case, the empty string has nothing to do with the interdependency it-
self but with the existence or absence of the whole containing structure.
The latter is duly verified using min/max occurrence specifications in place
of conditions.

15 / 64

www.reverseXSL.com 4.6 What is a Mark (noted MARK)?
Example:

|| MARK @Priority COND INpriority "S" "SYSTEM" "NULL"

m
ark elem

ent at depth 2

yields an XML
attribute

Priority="…"
attached to
parent ele-

ment (SEG or
GRP)

Current feeds
into the named
condition "INpri-
ority" are used
for evaluation

evalua-
tion

pattern.
Testing
here for
a match
with the
single
letter
"S"

mark element
value if TRUE.

mark element
value if FALSE.
"NULL" is re-
served value for
do-not-
generate-the-
element-at-all
whereas ""
would yield an
empty element.

A mark is the evaluation, on the fly, of a named condition, whose result is
inserted in the output message at the depth and at the level where it is
evaluated.
A mark behaves mostly like a data element definition but for the essential
fact that it does not consume (and does not need to match) any input data.
A mark allows inserting a value in the message flow to 'mark'—literally—
the verification or non-verification of a given pattern of occurrences in the
message. A mark allows reporting explicitly in the output message (with
XML tags or attributes and values) the result of evaluating a named condi-
tion. There are four possible purposes:
 One can attached a named condition to a data element in order to

generate its value as token associated to such condition. Then, just
next to the data element and at the same depth, one or several
marks may be inserted in the message, each containing an evalua-
tion expression that recognise the different patterns of the said token
as, for instance, an email address, a fax number, a contact person or
else, and consequently insert in the output message an explicit XML
element (or attribute) whose value would 'mark' the type of data ele-
ment just recognised.

 A variant of the above case is to pick-up the entire value of a coded
data element in a named condition, and then evaluate one by one all
possible code values in subsequent Marks, with the effect that the
one Mark matching the code will be inserted in the output XML and
can actually yield the verbose equivalent (or alternative coding) of the
coded value. In other words, this mechanism allows performing code
mappings on the fly at parsing time.

 One can explicitly report that 'no such element' or 'no such group' or
'no such segment' was found in the source message.

 One may decide to report within the XML output itself that some in-
terdependencies or other conditions (alike min and max occurrences,
or the presence or absence of specific data) were met in the mes-
sage (for which a named condition is associated) and thus indirectly
give processing instructions to whoever will handle the XML output.

Alike for a data
element, if the tag
name of a mark
begins with @, it
will be promoted as
an attribute to the
parent element.

16 / 64

www.reverseXSL.com Evaluating a mark is almost the same process as verifying a named condi-
tion but there are noteworthy differences:
 The evaluation is performed on the fly and not once the parsing is

completed like named conditions. The evaluation is thus performed
with whatever named condition tokens are already available at the
point where it is evaluated, and at the depth that is that of the
MARK element itself.

 A mark never throws nor records an exception: it is evaluated and
the result of such evaluation could only be true or false. A corre-
sponding value is inserted matching the true or false result, and that
is all.

 The reserved value "NULL" may be used to suppress the production
of an output XML element in case of the True or of the False out-
come (both of them at the same time would not make sense but work
anyhow, and yield a no-operation).

4.7 What is the Effect of min/max & Accept
Loop Counts?
MINimum, MAXimum and ACCept loop counts apply to groups, segments
and data elements.
ACC is a parsing-in-a-loop control tool, not a condition
Any ACCept count above 1 does trigger a loop attempt while parsing the
message. The actual ACC count does limit the number of attempts to iden-
tify the relevant structure (the parsing loop is executed till a first failure to
identify the structure occurs, else the ACC count is reached).
An ACC count above the MAX count does allow accepting more instances
than necessary (in order to be able to continue parsing for instance) but
will report an exception later on (recorded or thrown).
MIN / MAX / ACC specifications
MIN, MAX and ACC boundaries are specified as numbers, and only num-
bers.
A very large MAX or ACCept number shall be used for nearly unlimited
counts. We mean 'nearly' unlimited because there's no convention like
using a 'R' letter for instance for indicating a truly unlimited Repetition. One
shall always enforce a value because machine representations of integers
are also limited5. In case of doubt, a good max value is made of nine 9's
(it's easy to remember), i.e. 999999999 or a billion instances (fitting a 32bit
unsigned integer). In all circumstances, using such large number means
that the message shall also be at least 1 gigabyte long at this position (if
repeating only one single char). We do recommend calculating fair maxi-

5 If a max number is too large, it will fail while loading the DEF file and not while parsing a message.

17 / 64

www.reverseXSL.com mums based on the expected maximum message size divided by the
minimal item length in bytes.
The top level segment or message itself is always Mandatory, 1-min , 1-
max, 1-acc.
Exception handling
Alike named conditions, Min/Max violations are checked and reported af-
ter the parsing of the input message is completed. Such verification has
precedence over the verification of named conditions.
The reason for the delayed reporting of any min/max exception (in case
they were all recorded of course and the maximum acceptable record
count has not been reached) is to provide a clear grouped report about all
repeating/looping problems at a single place.
Let's be clear: the verification of min/max constraints is not performed dur-
ing the parsing. Only the M/O/C cardinality indicator and the ACC counts
are used to control looping constructs while parsing.
So, the verification of M/O/C cardinality (Mandatory or Optional, and Con-
ditional alike) must be distinguished from min/max constraints. M/O/C car-
dinality is, it, verified in the course of the parsing. The reason is indeed
bound to the direct impact of Mandatory / Optional (or Conditional) con-
straints onto the correct parsing of the rest of the message.
Each time the parser enters a new group or segment or data element defi-
nition line (while progressing top down through the message definition and
while looping during parsing), a min/max condition object is added to the
global condition context. Repetition counts are recorded along with details
on the group, segment or data element name, offset in the message, etc.
The parser exists from a group or segment or data element definition line
(and associated min/max condition object) when either the ACCeptable
count has been reached, either the identification pattern (or validation pat-
tern for a data element) failed to match.
If there is no match and the Mandatory constraint is set, then an exception
is raised immediately (which can be recorded or thrown). Recording a
Mandatory violation is then a means to tolerate the absence of an ele-
ment.
At the end of the parsing, the collection of all group, segment and data
element instances is available for global tracing/debugging purposes in
addition to the verification of min/max conditions as described below.
About the Interpretation and actual effects of loop counts
Min/Max/Acc counts are associated to Mandatory, Optional and Condi-
tional constraints in somewhat subtle ways.
Let's illustrate through examples.

18 / 64

www.reverseXSL.com Simple cases:
M 1 999999 ACC 999999 Means the unlimited repetition of at least one segment, or

group, or data element
O 0 99999 ACC 999999 Means zero or more instances of the segment, or group,

or data element
M 1 1 ACC 1 Means one and only one instance
O 0 1 ACC 1 Means zero or maximum one

Advanced cases:
M 3 10 ACC 999999 From 3 to 10 instances shall be found in theory but the

parsing may continue if only 1 up to more than 10 in-
stances are actually found in the message. An exception
(e.g. thrown as fatal or else recorded as warning, as fur-
ther specified) is raised for any count below 3 or over 10.

O 0 10 ACC 999999 From 0 up to a nearly unlimited count of instances is ac-
cepted at parsing time. But any count over 10 will raise
an exception when parsing is finished.
This is recommended whenever the increase of ACC
versus the formal Maximum will not cause the parsing to
slip into misinterpretations. Indeed, many receiving appli-
cations may be able to accept more line items or other
elements than formally allowed in the message stan-
dards.

O 1 10 ACC 10 During parsing, 0 to 10 instances will be accepted. Next
to parsing, anything below 1 will raise an exception. This
is a way to relax Mandatory constraints whenever the
parsing will not be affected. Missing elements will typi-
cally be reported as warnings anyhow.

M 1 10 ACC 1 The parser is forced to accept only one instance. No
more. This may be a way to temporarily restrict the mes-
sage to a subset because the later mapping step is for
instance unable to handle more than 1 instance. How-
ever, the official definition specifies up to 10 occurrences.
If the input message actually contains 2 or more in-
stances, the parsing will likely fail to match the repeated
segments that follow.

SEG…A… M 1 10 ACC 1
SEG…B… O 0 10 ACC 9

This is a variant to the above case, where different seg-
ment structures are used to absorb the first 1 and the
next 9 instances. The MAX value (here 10) becomes
useless but as a piece of documentation!

M 1 10 ACC 0 or
O 0 10 ACC 0

ACC O is a special case: the parser is forced to skip this
group, segment or data element. Useful for testing or
temporarily enforcing a subset.

O 0 0 ACC 999 The parser accepts the relevant data or segment, but will
report an error whenever a single instance is present in
the message (MAX=0!). This is useful for instance to
absorb data lines next to the formal end of a message
instance and report this as a warning next to parsing.

4.8 How is Data actually Separated from
the Message's Syntax?
The syntax of the message is by definition made of:

Notation: the first
letter stands for
Mandatory, Op-
tional and Condi-
tional; the two num-
bers that follow
respectively indi-
cate the min and
max loop counts.
The whole is fol-
lowed by the ACC
keyword and the
acceptable loop
count value.
Everything stated
here for Optional
applies to Condi-
tional as well.

19 / 64

www.reverseXSL.com  Tags, not necessarily prefixing a segment but appearing anywhere
else in accordance with relevant message syntax definitions;

 Segment terminators and separators;
 Data element separators (explicit delimiters);
 Implicit delimiters as implied by fixed size structure definitions or pat-

terns (e.g. num to alpha transition);
 Patterns that differentiate an element from another one that could

occur at that same place. For instance, a variable-size field that is
longer or shorter than a given size can lead to different interpreta-
tions (e.g. in Cargo-IMP REF/… lines); another example is that of a
data element starting with alphabetical characters instead of numeri-
cal ones, and that shall be interpreted differently.

Which can be nested to any level.
Such syntax shall be 'removed' from the raw input message in order to
yield clean, trimmed, data element values. Such trimming can occur:
 While cutting a segment into constituent elements;
 While validating individual data elements.

There are then two points at which syntax can be thrown away. The bal-
ance between these two places is a matter of taste, development conven-
tion, or ease:

Although equivalent in term of the end result (getting the output XML
document filled up with the data from the original message), the point
at which syntax is removed will potentially affect the error outputs:
more or less of the original syntax will still be visible in the error mes-
sages while exceptions are generated from the depth of the very last
data element validation steps. In addition, miss-placed separators or
bad padding (field alignment) for instance will generate a 'cut' error
while processed at a segment level, else a 'validation' error while
processed at the data element level.

Segment cutting modes based on regular expressions
Regular expressions provide mechanisms for three cutting modes:

7. Repeating Pattern cutting mode
In such mode, only capturing group 0 (the pattern itself) is used and the
pattern itself would be selected such as to repeat from the beginning to
the end of the segment. The successive matching elements of the
original segment do define as many sub-segments/data elements.

For instance the pattern is: "/[/̂]*"

And the segment is: "DIM/12345//ABCDEF/XYZ ABC"

It yields the following segment pieces: "/12345", "/", "/ABCDEF", and "/XYZ
ABC".

The "DIM" chunk is left out of the inventory, which is OK if DIM is the
segment tag. However, in some cases, the first element is also a data
element. The following variant allows capturing it:

A / followed by zero
or more not-/ chars

20 / 64

www.reverseXSL.com The variant pattern is: "/[/̂]*|^[̂ /]*"

And the segment is: "LUX/12345//ABCDEF/XYZ ABC"

It yields the following pieces: "LUX", "/12345", "/", "/ABCDEF", and "/XYZ
ABC".

We shall observe that in both cases the syntax character "/" is still part
of the generated data elements.

8. Straight Capturing-Group cutting mode
The pattern must contain capturing groups (i.e. there's at least one pair
of "()" in the pattern string) and capturing groups 1 to n (indeed not
group 0 which is the pattern itself) and respectively yielding the suc-
cessive matching elements from the original segment.
Nested capturing groups are ignored.

The pattern is: "^DIM/(.*?)/(.*?)/((.).*?)/(.*)$"

And the segment is: "DIM/12345//ABCDEF/XYZ ABC"

It yields the following matching groups and thus four segment pieces:
G1:"12345", G2:"", G3:"ABCDEF", G4 is ignored (nested), G5:"XYZ
ABC".
We shall observe that the syntax characters "DIM" and then "/" are not
part of the generated data elements.

9. Repeating Capturing-Group cutting mode
This mode combines the above two. Group 0 (the pattern match itself)
is excluded from the inventory of data elements in proper but only rep-
resenting the pattern-matching loop. Data elements are generated from
group 1 to n within the group 0 loop. Nested capturing groups are ig-
nored.
For instance the pattern is: "(...)-([^/]*)/?"
And the segment is: "123-4ABCDEF/456-XYZABC000/789-BBBCCC"
We get a total of six data elements:

in pattern-loop 1: G1:"123", G2:"4ABCDEF"
in pattern-loop 2: G1:" 456", G2:" XYZABC000"
in pattern-loop 3: G1:" 789", G2:" BBBCCC"

Again, the syntax characters are no longer part of the generated set of
data elements.

A / followed by zero
or more not-a-/
chars, or, the start
of input followed by
zero or more not-a-/
chars

…using reluctant
mode for the ".*",
that means any
char repeated.

A series of three
chars followed by a
dash, then any
number of not-a-/
char, followed by an
optional /.

21 / 64

www.reverseXSL.com Segment cutting modes based on simple functions
The cutting patterns provide a very rich and flexible mean of cutting off a
segment. This is more sophisticated than required for the great majority of
cases. A set of built-in functions is available that greatly simplifies parsing.
For instance, the cutting function CUT-ON-(/):

Applied to: "LUX/12345//ABCDEF/XYZ ABC"

Yields immediately: "LUX", "12345", "", "ABCDEF", and "XYZ ABC".

The cutting function CUT-ON-NL (New Line) will typically be used to cut
the top-level segment, the message itself, into sub-segments and groups.
Each segment is indeed a text line.
The built-in segment cutting functions do remove the syntax characters
from the generated data element list. Somehow, they provide the simplicity
of a repeating pattern with an easy way of getting rid of syntax characters.
More functions of the kind are specified further in §5.1
The use of built-in functions is highly recommended and patterns shall be
kept for dealing with the complex cases, as well as validating data ele-
ments (cf. just next).
Data Element cutting (and validation) modes
A piece of string that will be matched by the parser as corresponding to a
data element may or may not still contain syntax characters. In the former
case, such syntax shall be removed; in the second case, one can validate
the data contents immediately.
The validation pattern must contain at least one capturing group—at least
a pair of '(' ')'—that isolates the data portion from the syntax and padding
stuff.
In case multiple validation groups are contained the data value is defined
as the concatenation of all capturing groups 1 to n in that order. Such
technique can be used to remove syntax characters in the middle of the
data element. Note that during concatenation, nested capturing groups
are ignored; only the capturing groups following each other are concate-
nated (otherwise the data matching sub-capturing-groups will be dupli-
cated in the result!).
In all circumstances the validation pattern must match the entire input
string making the data element; i.e. the matcher.matches() method of
Java would yield TRUE. Yet in other words, the interpretation of the pat-
tern is enforced as 'possessive'.
The validation pattern has a twofold purpose:
 As a means to remove syntax characters and padding;
 As a data value validation function, i.e. as performed by sub-pattern

contained within the capturing group(s).
Note that this second role is only one of the two ways to validate the data
element value:

Separator or Ter-
minator? cut-
delimiters are han-
dled as separators
within any segment
but the top-level
segment (i.e. mes-
sage) itself, where
the semantic is that
of a terminator!

22 / 64

www.reverseXSL.com 1. The first method as described above is to use the validation-pattern
itself and enforce the necessary restrictions inside the capturing
group(s).

2. The second method is to use a generic capturing group specification—
alike '(.*)'—and rely on a built-in character-set validation function alike
UPALPHA, NUMERIC, DIGIT and others defined in §5.2.

4.9 Delimiter or Data? Using a Release Char
Various legacy EDI standards use a variable-field-size syntax. Printable
characters like + : ' * ~ # / - are often used as field separators, and seg-
ment or block terminators. But these are also commonplace characters
that may occasionally appear in data values themselves.
In the American X12 standard, the characters used as delimiters are sim-
ply forbidden in data values. One has to choose delimiter characters so
that they never occur in data and specify those delimiters in the ISA Inter-
change Header segment.
In the ISO EDIFACT standard, the characters used as delimiters may also
occur in data, provided that they are preceded by a so-called 'release
character' thus forming an escape sequence. The default release charac-
ter is '?'.
Assuming that +, :, and ' are delimiters, and ? the release char; a data
value like:

JOHN'S SELECTION: BLUE? NO, GREEN+YELLOW

Shall be rewritten in EDIFACT:
JOHN?'S SELECTION?: BLUE?? NO, GREEN?+YELLOW

The Parser features a built-in mechanism for the correct handling of delim-
ited data fields possibly containing delimiter characters in literal values.
The release character is simply declared at the very beginning of the
DEFinition file with a statement like:

SET RELEASECHARACTER '?' for a single char

SET RELEASECHARACTER '\u2023' for a Unicode value

or else

SET RELEASECHARACTER '\\' for the \ char itself

Then, whenever a segment cut function that specifies delimiters (explicitly
or with a regex) is invoked and matches an area of a single character, the
Parser checks for an odd count of release characters immediately preced-
ing it, and if so, skips this cut. Ultimately, when extracting data values (as
well as while feeding CONDitions), the values are post-processed such as
to remove release characters and render the plain original value in XML.

An alternative
choice can be ex-
plicitly specified in
the UNA service
segment that will
prefix the whole
interchange.

23 / 64

www.reverseXSL.com 4.10 Using Reserved XML tags: NOTAG, RAW
and SKIP
There are three reserved tag values with diverse effects on the XML out-
put. None of them can apply to the message level itself (i.e. top level seg-
ment).

NOTAG

Applies to segments, groups and data elements. NOTAG is a reserved
name that asks to flatten the XML structure, or in other words, suppress
the relevant element nesting.
For instance, the parsed result in native parser format is:

ROOT
segment SEGMENTONE

data DATA1 "hello"
data DATA2 "world"
group NOTAG

data DATA3 "foo"
data DATA4 "bar"

data DATA5 "and"
untagged "some"
group GROUPONE

data DATA7 "more"
END

will yield the XML

<ROOT>
<SEGMENTONE>

<DATA1>hello</DATA1>
<DATA2>world</DATA2>
<DATA3>foo</DATA3>
<DATA4>bar</DATA4>
<DATA5>and</DATA5>

</SEGMENTONE>
<RAW>some</RAW>
<GROUPONE>

<DATA7>more</DATA7>
</GROUPONE>

</ROOT>

SKIP

Applies to segments, groups and data elements. "SKIP" asks to entirely
suppress the relevant element from the output XML structure.
For instance, the parsed result in native parser format is:

ROOT
segment SEGMENTONE

data DATA1 "hello"
data DATA2 "world"
group NOTAG

data DATA3 "foo"

24 / 64

www.reverseXSL.com data SKIP "bar"
data DATA5 "and"

untagged "some"
group SKIP

data DATA7 "more"
END

will yield the XML

<ROOT>
<SEGMENTONE>

<DATA1>hello</DATA1>
<DATA2>world</DATA2>
<DATA3>foo</DATA3>
<DATA5>and</DATA5>

</SEGMENTONE>
<RAW>some</RAW>

</ROOT>

RAW

Applies to segments, groups and data elements.
If the parser method generating XML output is invoked with the boolean
argument "withRAW" as false, both the structures tagged "RAW" and the
rest of yet untagged structures (as may be left in the message consequent
to failed parsing whose exceptions were recorded—hence trapped—and
not thrown) are removed from the XML output.
For instance, the parsed result in native parser format is:

ROOT
segment SEGMENTONE

data DATA1 "hello"
data RAW "world"
group NOTAG

data DATA3 "foo"
data SKIP "bar"

data DATA5 "and"
untagged "some"
group SKIP

data DATA7 "more"
END

will yield the XML

withRAW==false withRAW==true
<ROOT>

<SEGMENTONE>
<DATA1>hello</DATA1>
<DATA3>foo</DATA3>
<DATA5>and</DATA5>

</SEGMENTONE>
</ROOT>

<ROOT>
<SEGMENTONE>

<DATA1>hello</DATA1>
<RAW>world</RAW>
<DATA3>foo</DATA3>
<DATA5>and</DATA5>

</SEGMENTONE>
<RAW>some</RAW>

</ROOT>

25 / 64

www.reverseXSL.com 4.11 Using the Reserved NULL Value
The NULL value is only applicable to MARKs (cf 4.6 & 5.6). Note that it
shall be written as the quoted string "NULL" as illustrated below.
For instance:

|||MARK AIRTAG COND CodeCheck "[0-9]{3}" "airline code" "NULL"

yields the XML element:
<AIRTAG>airline code</AIRTAG>

if the condition 'CodeCheck' evaluates to 3 digits exactly, and would not
generate any XML output otherwise.

4.12 Exception Handling
Exceptions:
 are Thrown or Recorded: in the former case the module calling the

parser shall trap the exception—the exception is effectively thrown as
defined in java; in the later case the exception is recorded in an or-
dered list of exception objects and processing continues.

 have an error level as Warning or Fatal. The distinction has no par-
ticular semantics and no effect beyond the counting of:

o number of fatal exceptions;
o total number of exceptions, warning and fatal level.

These two counters are compared with respective thresholds after
which all exceptions are thrown—in java terms.

Types of exceptions
The following brands of exceptions can be raised while parsing the input
file and building the target XML message:

A. Syntax errors while parsing
Can be recorded or thrown, can be fatal or warning

A.1 Violation of the message structure; i.e. sequence of segments
and nesting, notably when:

. A mandatory segment or data element is missing

. No member of a mandatory group has been found

. Data is found in the source message for which no matching
definition exists

A.2 Unable to break a segment into constituent elements; problems
occurred related to cutting due to invalid regular expression syn-
tax.

A.3 Unable to extract a data element value from the input syntax;
typically, the validation pattern failed to match the whole input
data element, or the regular expression syntax is invalid.

A.4 Invalid characters or size of the extracted data value.

26 / 64

www.reverseXSL.com B. Conditions not being met
Can be recorded or thrown, can be fatal or warning

B.1 Found less than MIN or more than MAX instances of a repeating
group, segment or data element

B.2 A Named condition fails to match the associated inter-
dependency pattern

C. Built-in errors
Never recorded, always fatal

C.1 DEF file is corrupt: invalid GRP, SEGment, MARK or Data defini-
tions are contained, and so forth.

C.2 Additional data is found after the end of the message; note that
this is not taken as an error in category A because one can al-
ways accept extra data after the official end of a message by in-
serting a last segment of the kind (that also tells how to stuff it in
the target XML message):

|SEG "" "GARBAGE" O 0 0 ACC 999 R W "found extra data"

This variant using a group may be preferred: it has the advantage
to raise just a single warning-level exception for any number of
lines found after the official message end. The target XML will
also contain just one "Extra" element.

|GRP "" "Extra" O 0 0 ACC 1 R W "found garbage"

||SEG "" "GarbageLine" O 0 999 ACC 999 R W "extra line"

C.3 Java system errors: array out of bound, NULL object, or else…
will require bug fixing indeed…

Exception Attributes
Whenever an exception is thrown or recorded, the following attributes are
available for tracing:
 The nature of the exception, featuring a reference number, e.g.

"P0023 MAX allowed count exceeded". The code may be used to
find a translation into a language resource file (see further).

 The description of the element being affected by the error, available
as a reference-code plus text. The code may be used to find a trans-
lation into another language in a language resource file (see further).

 The Warning or Fatal error-level (W or F)
 The absolute or line-relative offset (in characters) in the file
 The absolute line position in the original message (whatever line ter-

minators are used: LF, CRLF, CR alone or FF).
 A copy of the complete segment or the chopped-out data element at

stake (string)
 A copy of the complete previous or parent segment (string) (allowing

to say "next to…" or "within …" in the error message if so desired for
a following segment, or for a data element respectively)

Defined by Parser-
Exception:

The contextual
cascade of all repe-
tition loops with
associated tags,
e.g.
FFR(1),ULD_Group
(7),ULD_ID(3),Weig
htCode(1), appears
to bear limited use-
fulness and so has
not been imple-
mented.

27 / 64

www.reverseXSL.com Description text structure
A piece of description text as specified in SEG, GRP, D or COND lines
must always be included in DEF files in plain English.
The text string has itself a structure alike:

"keyword free text following it"

Where the keyword is the first word (i.e. not containing space characters)
of the description text itself. That keyword must use only characters in the
ASCII character set. The parser will use it to find possible text substitutes
in other languages whenever a language-map object is passed along as
argument while invoking the methods that handle exceptions.
If no translation is found for a given error text (hence no matching keyword
exists in the passed language-map object) the parser will keep the original
error text from the DEF file itself.
For instance:
We have the following definition:

|SEG " /̂OSI" "OSI" O 0 1 ACC 99 R W "FFR-6. OSI line"

And we have also a French-language-map object notably containing
"FFR-5." "Ligne SSR – Requête de service spéciale"

"FFR-6." "Ligne OSI"

"FFR-6.2" "Première ligne détails OSI"

"FFR-6.3" "Deuxième ligne détails OSI"

And an exception "P022 MAX allowed count exceeded" is raised.
That will trigger an exception message in English alike:

"ERROR (P022) Repeating not allowed : FFR-6. OSI line

[L:22,0:17] OSI/ORIGINAL EXTRA LINE"

And in French alike:
"ERREUR (P022) Répétition non autorisée : FFR-6. Ligne OSI

[L:22,0:17] OSI/ORIGINAL EXTRA LINE"

And if the translation was asked but not found:
"ERROR (P022) Repeating not allowed : FFR-6. OSI line

[L:22,0:17] OSI/ORIGINAL EXTRA LINE

(no translation found)"

5. DEF File Line Formats
All SEG, GRP and D lines are preceded by at least one '|' character indi-
cating the nesting level of the relevant segment, group or data element.

5.1 SEG (segment) Definitions
SEGment definition lines have the following syntax:

WARNING: this
feature is not yet
available in the
public software
release of the re-
verseXSL parser

Multi-language
support is prepared
but has not been
implemented ac-
cording to initial
development scope.
Will be enabled on
request.
This section is
informative.

28 / 64

www.reverseXSL.com

SEG
"pattern"

""

aTag
NOTAG

RAW
SKIP

M
O
C

min max ACC nb

R
T

W
F

"description"
cut-function

CUT "pattern"
/suffix

COND name "feed"

Formally:

SEG {"<id-pattern>"|""} {<XMLtag>|NOTAG|RAW|SKIP} ../..
{M|O|C} <MIN> <MAX> ACC <ACC> ../..
{{{R|T} {W|F} }|{COND <name> "<feed>"} } ../..
"<description>" ../..
{ <cut-function> | CUT "<cut-pattern>" }
{ /<suffix> }0..1

Where:

<id-pattern> is the segment identification pattern. The segment is
matched only if:
Pattern.compile(id-pattern).matcher(segment)
.find()
yields TRUE and further cutting and parsing of the
segment contents itself yields at least some match-
ing sub-elements.
In other words, some pieces of the content of a
segment must be successfully identified in order to
consider that an instance of it has been "found" in
the source message.

<cut-pattern> is a pattern that will be used to cut a segment into
sub-strings as explained in §4.8 here-above.

The id-pattern can
be found elsewhere
in the input seg-
ment, according to
pattern specs.

29 / 64

www.reverseXSL.com <cut-function> is a built-in function that cuts the segment into data
elements or sub-segments. The Built-in functions
are:

 CUT-ON-(<char>) any single printable ASCII,
for instance CUT-ON-(/), CUT-ON-(,), etc.

 CUT-ON-NL: The function cuts the given seg-
ment into as many sub-segments as lines in
the input string. Any of CR, CRLF, LF or FF,
are valid line terminators (CR=\u000D,
LF=\u000A, FF=\u000C).

 CUT-ON-TAB
 CUT-ON-1NBSP a single non-breaking space

is assumed; i.e. two following spaces define an
intermediate empty field

 CUT-ON-RNBSP repeating NBSP can be used
as separator; i.e. two following spaces, or 'a
space plus a tab plus two spaces' are both in-
terpreted as one separator.

 CUT-FIXED-(<n>) where <n> is an integer.
This function cuts the segment in fixed size
elements of n characters (not bytes, think Uni-
code).Example: CUT-FIXED-(3), CUT-FIXED-
(15), CUT-FIXED-(1000)… Attention: the last
sub-element may contain less than n charac-
ters.

 CUT-ON-"<regex>" where <regex> is the
specification of the separator. This function al-
lows specifying a set of different characters as
separator, or a combination of several charac-
ters. Example:

o CUT-ON-"[./]" cuts a segment on every
single '.' or single '/'

o CUT-ON-"--" will cut a segment on se-
quences of two hyphens '--'.

o CUT-ON-"[\t]+" is equivalent to CUT-
ON-RNBSP

The Built-in functions do remove the relevant syn-
tax characters.
Attention: these syntax characters are always as-
sumed as being separators; i.e. "/REF/123//ABC/"
contains not four but six fields separated by a '/':

"", "REF", "123", "", "ABC" and ""
However, the above delimiter-semantic is turned into
a terminator-semantic in case of the message itself
(the top level segment indeed). If the above example
is the whole message, "ABC" becomes the last of a
set of 5 pieces only.

Terminator or de-
limiter?
CUT functions as-
sume a delimiter
semantic (hence
"<sep>data<sep>"
yields "" and "data"
and "") when ap-
plied to segments,
and a terminator
semantic when
applied to the mes-
sage itself (the top-
level segment in-
deed). For instance
a CUT-ON-(') of the
simple Message
"'data'" yields two
elements: "" and
"data".

In addition to the
built-in CUT func-
tions we have the
generic CUT "<pat-
tern>" described in
§4.8

Do not mix CUT
"<pattern>" with
CUT-ON-"<regex>":
the former uses
capturing groups,
the later defines the
particular string to
consider as separa-
tor (and remove
from the syntax).

30 / 64

www.reverseXSL.com <description> is a string whose first word can be used a key to
search a matching translation in a language-map
file.

<XMLtag> is the XML data element name to create; i.e. it will
for instance yield <myXMLtag>…</myXMLtag>.

<name> is the name of a named condition defined by a
COND line (see further).

<feed> is the piece of string to be fed into the relevant
named condition collection. It is one of:

 a plain text string without a single '(' , in which
case that is the string to feed into the condition
collection.

 a string containing at least one '(' in which case
it is interpreted as a pattern with capturing
groups and the feed-string is the concatenation
of all capturing groups of only the first pattern
match (almost like a data element except that
the pattern is not interpreted as possessive).

{R|T} {W|F} stand for Record versus Throw, and Warning level
versus Fatal error level. Please refer to §4.12.

/<suffix> is an optional suffix to be appended to the default
or explicit namespace URI as explained in §6. Ex-
ample: "/Order/Body" (without quotes on DEF line,
always starting with a "/", and no spaces).

5.2 D (data element) Definitions
D'ata element definition lines have the following format:

D "pattern"

aTag
RAW
SKIP

NOTAG

M
O
C

min max ACC nb

R
T

W
F

"description"
char-spec

ASMATCHED
[min..max]

COND name "feed"

Formally:

D "<valid-pattern>" {<XMLtag>|RAW|SKIP|NOTAG} ../..
{M|O|C} <MIN> <MAX> ACC <ACC> ../..
{ {{R|T} {W|F}"}|{COND <name> "<feed>"} } } ../..
"<description>" { <char-spec> | ASMATCHED } { [<lmin>..<lmax>] }0..1

Where:

31 / 64

www.reverseXSL.com <valid-pattern> is the data element validation and cutting pattern.
This pattern must contain at least one capturing
group, the group that yields the data element value.
The data element is valid only if:
Pattern.compile(valid-pattern)
.matcher(dataElement)
.matches()
yields TRUE.
In addition, the data element value (next to extrac-
tion) must bear characters from the set specified as
<char-spec>.
This pattern is responsible for extracting data.
Examples:

 "(.*)" to accept anything but later restricted by
<char-spec>.

 "^/(.*)" to remove a leading '/'
 "^(.+?) *$" to trim trailing spaces

In case the pattern contains more that one capturing
group, the extraction procedure works as described
in 'Data Element cutting (and validation) modes' on
page 21.

<char-spec> is a keyword that defines the set of characters that
can be accepted in the data element value (i.e. after
extraction). We have:

 ALPHA is A-Z a-z (no space char)
 UPALPHA is A-Z (no space char)
 ALPHANUM is A-Z a-z and 0-9 (no space char)
 UPALPHANUM is A-Z 0-9 (no space char)
 IATA is UPALPHANUM plus '-' (hyphen), '.' (full

stop) and space; it applies to Cargo-IMP and
AHM standards and matches the 't' free-form-
text specification.

 DIGIT is 0-9 (no space char accepted)
 NUMERIC is 0-9 '+' '-' ',' '.' and ' ' (space)
 ASMATCHED implies that no additional valida-

tion is made but as already performed inside
the capturing group of the <valid-pattern> itself.

 REPEATED-"<regex>" allows using a regular
expression on the extracted value (NOT the
original input element). To be valid, the data
element must match exactly {<regex>}0..n i.e.,
the value is a repetition of <regex> from 0 to
any number of times.
For instance: REPEATED-"AB(C)?" yields true
for the value "ABCABABABC", as well as "".

Data validation
is implicitly 'posses-
sive', i.e. the speci-
fied validation pat-
tern shall match
entirely, and once,
the whole input data
piece. No charac-
ters can be left
away from such
matching. It's all or
nothing. The begin-
ning and end of the
validation pattern
must match the
beginning and end
of the data.

32 / 64

www.reverseXSL.com And a validation against an explicit character
set can be simply noted:
REPEATED-"[A-Z0-9_/:.+= -]*"

 ASCII, stands for all ASCII printable characters
(with space), i.e. between U+0020 and U+007E
inclusive.

 DATE-"<dateFormat>" uses the dateFormat
pattern as argument to the SimpleDateFor-
mat.parse() method.

[<lmin>..<lmax>] is an optional specification for the minimum and
maximum length of the data element value (as re-
sulting from the extraction). This specification may
be written for instance as:

[1..10] for a value containing 1 to 10 characters
[..10] for a value up to 10 characters
[2..] for a value containing at least 2 characters

The unit of length is the Unicode character, and not
bytes.
Note that the "[]" characters are required: "[]" are
terminal symbols and not just notation syntax; the
fact that this specification is optional is noted { }0..1

Other fields are similar to the SEG definition.

5.3 GRP (group) Definitions
GRouP definition lines have the following format:

GRP
"pattern"

""

aTag
NOTAG

RAW
SKIP

M
O
C

min max ACC nb

R
T

W
F

"description" /suffix
COND name "feed"

Formally:

GRP {"<id-pattern>"|""} {<XMLtag>|NOTAG|RAW|SKIP } ../..
{M|O|C} <MIN> <MAX> ACC <ACC> ../..
{ {{R|T} {W|F}"}|{COND <name> "<feed>"} }} ../..
"<description>"
{ /<suffix> }0..1

The syntax is just like a SEG line without the cut-function or cut-pattern
specifications.

Beware that special
characters like '.'
and '-' do not mean
the same thing
when written in
between square
brackets [] and
outside of such
square brackets in
regular expres-
sions.

33 / 64

www.reverseXSL.com A group is only a wrapper for segments and other sub-groups, as ex-
plained in §4.3.

5.4 MSG & END Definitions
The whole message is a top-level segment.
A MSG definition is a SEG definition with additional restrictions as follows:

MSG
"pattern"

""
rootTag M 1 1 ACC 1

R
T

W
F

"description"
cut-function

CUT "pattern"
/suffix

Formally:

MSG {"<id-pattern>"|""} <XMLroot> ../..
M 1 1 ACC 1 ../..
{R|T} {W|F} "<description>" ../..
{ <cut-function> | CUT "<cut-pattern>" }
{ /<suffix> }0..1

The keyword is changed from SEG to MSG, and a large part of the rest of
the line is imposed. The syntax is however matching exactly that of a
segment.
The END line is the last of the message definition, as follows:
END

Another difference is that the MSG definition is always starting in column
0; in other words, there is no '|' level indicator in front of such line.
The optional namespace suffix must start with a "/" . It will be appended to
the default or explicitly SET namespace as described in §6. This will be-
come the top-level namespace for the root element of the generated XML
document, and all descendant elements, unless explicitly amended within
groups or segments.

5.5 COND Definitions
Named conditions are declared as follows:

COND name "pattern" DEPTH level
R
T

W
F

"description"

Formally:

COND <name> "<pattern>" DEPTH <level> ../..
{R|T} {W|F} "<description>"

Where:

34 / 64

www.reverseXSL.com <name> the name of this condition (unique within a given
DEF file).

<pattern> is the verification pattern for the condition. The con-
dition is verified only if:
Pattern.compile(pattern) .matcher(inputString)
.matches()
yields TRUE.
Where the input string results from the concatena-
tion (without extra separators) of the strings returned
by the various GRP, SEG or D definitions that con-
tained COND <name> <feed> in their definition. The
concatenation is further limited to all GRP, SEG and
D elements for repeating instances of the specified
depth level and at all child levels.

Examples:
These two data elements are mutually exclusive:
|||D "(.*)" D1 C 0 1 ACC 1 COND exclusive "X" ALPHA
|||D "(.*)" D2 C 0 1 ACC 1 COND exclusive "X" ALPHA

The following condition does check it:
COND exclusive "X" DEPTH 3 R W "only one of D1 or D2 allowed"

The first element is mandatory, and the second data element is required
when the first is coded KG:
||D "(.*)" D1 C 1 1 ACC 1 COND depend "(.*)" ALPHA
||D "(.*)" D2 C 0 1 ACC 1 COND depend "OK" NUMERIC

The following condition does check it:
COND depend "KGOK" DEPTH 2 R W "D2 required when D1 is 'KG'"

Note that the MIN occurrence count of D1 is set to 1 in order to raise an
exception whenever the first element is missing.

5.6 MARK Definitions
Marks are declared as follows:

MARK aTag COND name "pattern"
"value-if-true"

"NULL"
"value-if-false"

"NULL"

Formally:

MARK <XMLtag> COND <name> "<pattern>" ../..
"<value if true>" "<value if false>"

Where:

35 / 64

www.reverseXSL.com <XMLtag> is the XML data element name to create; i.e. it will
yield

<myXMLtag>value if true or value if false</myXMLtag>

<name> the name of the relevant named condition to evalu-
ate (unique within a given DEF file).

<pattern> is the verification pattern to apply to the condition.
The evaluation is the result of:
Pattern.compile(pattern).matcher(inputString)
.matches()
and yields TRUE or FALSE.

<value if true> <value if false> are the text values to attach to the
XML tag according to the evaluation of the pattern
just above. The value can be "" (the empty string) in
which case a nillable XML element (i.e. <tag />) is
inserted in the output. The value can also be set to
the reserved keyword "NULL" (quotes included
please) in order to suppress any XML output for ei-
ther true or false instances.

It's important to note that the MARK borrows the name of a declared
named condition (so as to collect tokens generated under such condition)
although it does not use any parameter from the declaration of the condi-
tion itself:
 The MARK bears its own—local—evaluation pattern;
 The depth scope is implicitly that of the mark element itself
 The Record/Throw and Warning/Fatal indicators are irrelevant, be-

cause a MARK would never generate an exception. There's always a
true or false outcome, even if the collection of tokens is empty (pat-
terns allow accepting or rejecting empty strings as needed).

5.7 Comments
Any line starting with a space or tab character is assumed to be a com-
ment and is ignored by the parser.
The parser also ignores any line after the END keyword, whatever the
line format. The line may even begin with a non-space character.
The DEF file section after the END keyword is a very good place for sav-
ing draft definitions, pasting a sample message, discussing alternative
parsing, and in general documenting the works.

This is very conven-
ient as a scratch
pad zone to store
copies of various
definitions, other
sample structures,
message specs cut
from manuals,
sample messages,
etc.

36 / 64

www.reverseXSL.com 6. Namespaces (SET BASENAMESPACE)
Namespaces play an essential role in XML. Every XML node with a name,
namely elements and attributes, can have a namespace attached to it.
The namespace is formally a Uniform Resource Identifier (URI) or Uniform
Resource Name (URN). The difference doesn't matter because it is simply
a string that qualifies the 'vocabulary' to which the XML tags used in a par-
ticular document belong. The namespace often looks like a web site URL
although it does not need to.
Namespaces allow differentiating for instance an XML element like ' Ad-
dress ' as defined by CompanyA, EnterpriseB, and AssociationC. The re-
spective and qualified element names may indeed be like
"http://www.CompanyA.com/xml/ce:Address", "EnterpriseB.edi.XML.glo-
bal:Address", and "urn:AssocC:tradebook3:Address".
The most common practice is to qualify all element names with name-
spaces, but not the attribute names. In fact, attributes are attached to ele-
ments and can therefore enjoy a distinguished semantic by such unambi-
guous relationship to a qualified element.
Namespaces are most often rather long strings which would significantly
increase the size of an XML document if attached to every XML tag.
Therefore, their representation in an XML document proceeds in two
steps: a) the declaration of namespace prefixes, b) the qualification of
element tags with the declared prefixes.
One shall remind that:
 The value of a namespace prefix is meaningless in itself. They are

just a shorthand notation for namespaces, purely local to an XML
document, and often only to a fragment of an XML document. There-
fore, namespace prefixes in output XML documents are allocated by
the XML processing libraries (JAXP, XSLT engines, etc.) and not by
the application.

 Namespaces are explicitly attached to each XML document element.
There is no inheritance scheme but only shorthand notations that for
instance allow promoting a namespace as the default one and con-
sequently omit the namespace prefix in front of XML tags. Therefore,
the declaration of namespace prefixes, the decision to make one as
default instead of another, and the optimization of the scope of each
prefix is also under control by the XML processing libraries (JAXP,
XSLT engines, etc.) and not by the application. One can notably ob-
serve, dependent from your configuration, the repeated declaration of
the same namespace under different prefixes within the XML docu-
ments generated by the Parser or XSLT. Although some XML repre-
sentations may lack obvious simplifications in the distribution of
namespace prefixes, XML documents with different prefix values and
prefix declaration points are perfectly equivalent with each other
whenever they yield the same 'expanded' version (if you replace all
prefixes by the full namespace URIs and suppress all namespace
prefix declarations).

Namespace URIs
are essential ele-
ments of an XML
document.
XML documents
without any name-
space can be pro-
duced by the rever-
seXSL Transformer,
although poor prac-
tice.

37 / 64

www.reverseXSL.com With the above reminders, we can now explain how the reverseXSL soft-
ware handles namespaces.

[1] Every DEF file contains the implicit or explicit declaration of a single
base namespace.
o Implicit case: the DEF file does not contain a SET

BASENAMESPACE statement. The base namespace URI is
then either one set here, else the default
"http://www.reverseXSL.com/FreeParser".

o Explicit case: the DEF file contains the statement:
SET BASENAMESPACE "<namespaceURI>"

For instance:
SET BASENAMESPACE "www.xyz.biz/xml"

Where:
<namespaceURI> is simply the URI string, e.g. "www.xyz.biz/xml".

[2] The base namespace URI is then used to qualify all elements of the
XML document generated by the parser. However, Groups and
Segments provide the option to extend the base URI with a suffix
(cfr §5.1, 5.3, 5.4), yielding for instance namespaces like:
www.xyz.biz/xml/GeneralHeader, www.xyz.biz/xml/CommonElts,
www.xyz.biz/xml/order/type1, and so forth.

[3] Early XML documents had no namespaces, and some applications
may still require XML documents without any namespace declara-
tion. This is still permitted by the XML standards. The reverseXSL
Parser provides the option of using the reserved URI value
"NoNamespace", with the effect of suppressing namespaces from
the output XML document (no suffix shall be used indeed, only the
statement SET BASENAMESPACE "NoNamespace" in the relevant DEF
file).

The lower-level
Parser API provides
an equivalent
method to set the
base namespace.

Beware, base
namespace URIs
are case sensitive.The good use of
namespaces may
considerably sim-
plify the manage-
ment of XML sche-
mas, the generation
of Java classes with
JAXB, and the de-
velopment of XSLT
mappings.

38 / 64

www.reverseXSL.com 7. Advanced Questions

1. Are Named Conditions always verified? ..39
2. Can we use reserved characters like " (double quotes) within

regular expressions?..39
3. In case the source message misses important data elements of a

given structure, when would the parser assume that a segment (or
group) structure is anyhow existing, but incompletely matched? .40

4. Is the parser able to skip a bad line in the input message and
resume parsing as if it never existed? (Backtracking)41

5. Can we use 'negative' identifiers for segments and groups? In
other words, specify a group of segment to be identified when the
input data is NOT matching a specified pattern?.............................41

6. What is the meaning of 'optional' cardinality? 'Empty' or 'not-there'
at all? Can we distinguish empty data elements values from
optional data elements?...42

6+. Remove Non-Repeatable Nil Optional Elements46
7. How can we define a data element to match the empty string or

else a precise pattern? ...47
8. Can we verify that a data element value matches a limited set of

codes? (Code lists)...48

39 / 64

www.reverseXSL.com Are Named Conditions always verified?
When no tokens at all were collected under a given name during the
parsing, the associated named condition is not checked.
In fact, a named condition may often express interdependencies in be-
tween a few data elements, and all of them may be contained in an op-
tional structure. Checking that the relevant condition would accept, in this
case, the empty string has nothing to do with the interdependency itself
but with the existence or absence of the whole containing structure.

Can we use reserved characters like " (double quotes)
within regular expressions?
Indeed, there are no means to escape the regular expression quoting
character. For instance, to perform a CUT on double quotes one can write:

CUT-ON-(") using the simple one char cutting function;

But one cannot write:

CUT-ON-""" i.e. using the CUT-ON-"<regex>" function.

Similarly, while attempting to parse a CSV input with quoted string values
alike: 123,"ABC","some more text",12.5,"DEF"
We may wish to follow a segment CUT-ON(,) by a set of data element
validation functions that would remove the double quotes; something alike:

||SEG …..CUT-ON-(,)
|||D ""(.*)"" …

The above example definitions featuring a " within the framing "…" would
simply fail to load. Attempting to escape the double quote as in "\"" would
also fail.
However, the DEF file loader does accept other characters than the "
(double quote) to frame regular expressions. In other words, where a regu-
lar expression is written "ABC" one can also use /ABC/ or 'ABC' or #ABC#,
else !ABC! and so forth. Regular expressions that may be noted as such
are used for segment or group identification, data element validation, CUT-
ON-specs, CUT patterns, REPEATED-"…", condition feeding, and condi-
tion evaluation expressions.
Actually, the first single non-space character encountered in front of a
regular expression will be the one used to delimit the end of the expres-
sion as well. Any printable character can be used.
Re-writing the above examples, the DEF loader will perfectly accept:

CUT-ON-'"'
CUT-ON-/"/
CUT-ON-("(6

6 CUT-ON-("(is a variant of CUT-ON-"regex" whereas CUT-ON-(") is a variant of CUT-ON-(char) !

Note that there are
no restrictions in
using:
\n for a LF
\r for CR
\t for TAB
\f for FF
\e for ESC
\cx for ctrl-x
\xhh for hexhh
\uhhhh for Unicode

40 / 64

www.reverseXSL.com CUT-ON-*"*
|||D /"(.*)"/ …
|||D '"(.*)"' …
|||D -"(.*)"- …

And so forth…

In case the source message misses important data ele-
ments of a given structure, when would the parser assume
that a segment (or group) structure is anyhow existing, but
incompletely matched?
The rules are as follows:
 If the first mandatory piece of a group or segment is not found,

and no previous optional piece existed or was already matched,
the whole group or segment structure is assumed as entirely
missing.

 Vice-versa, any successful attempt in matching a piece of a segment
or group before or at the first encounter with the first mandatory piece
as above would entail the existence of the whole structure and there-
fore the attempt to match the rest of this structure.

Let's illustrate.
The following definition:

|SEG " /̂" ServiceInfo … CUT-ON-(/)
||D "A(.*)" ServiceA O 0 1 ACC 1
||D "B(.*)" ServiceB O 0 1 ACC 10
||D "C(.*)" ServiceC M 1 3 ACC 3
||D "D(.*)" ServiceD O 1 3 ACC 3
||GRP "̂ E" SubGroupE O 1 3 ACC 3
|||D "(.*)" SpecialE M 1 10 ACC 10
|GRP " /̂" SupplementalInfo …
||D "(.*)" ServiceA M 1 1 ACC 1

Would cause the segment to exist if any of ServiceA, ServiceB or Ser-
viceC data piece is found. But if neither of them were found, the parser will
not look further (data ServiceD or SubGroupE are just ignored); the parser
will assume that the segment ServiceInfo does not exist, and jump directly
to the next definition, here 'SupplementalInfo', and then attempt to match
the source data against that one.
On the other hand, an ability to match the segment identification (here a
starting "/" char) followed by a successful match on ServiceA, or on Ser-
viceB for instance will cause an instance of the segment ServiceInfo to
exist. That may in turn cause exceptions to be raised for any further man-
datory piece of that segment that would be missing in the source data
message, but such missing mandatory pieces will not cause the existence
of segment ServiceInfo to be reconsidered even if discovered while match-
ing optional data pieces in the first place.

The same rules
apply to both
groups and seg-
ments

As a consequence,
two successive
groups or segments
cannot be distin-
guished from each
other by just using
different combina-
tions of mandatory
and optional cardi-
nalities on sub-
elements. But one
can instead use
attribute Marks to
explicitly indicate
which sub-element
combination is
which variant.

41 / 64

www.reverseXSL.com Is the parser able to skip a bad line in the input message
and resume parsing as if it never existed? (Backtracking)
Usually, a bad input line in a source message would cause the parser to
try every possible subsequent definition against it till the complete list of
candidate element definitions is exhausted. A validation exception will be
recorded for every mandatory sub-element (seen missing because unable
to match it) till there are no more definitions to try or the maximum count of
recorded exceptions is reached. At such a point, all the rest of the input
message starting with the bad line would be considered a raw data for
which no definition is left.
That was the behaviour of a first version. This behaviour has been
amended to provide more flexibility. The parser proceeds as follows:
 The parser counts successive failed attempts to match definitions

without any progress being made.
 The parser also keeps a trace of the first unmatched definition before

such repetitive failures.
 When the relevant failure count reaches a given threshold (by default

after three unsuccessful attempts to match the same input data piece
against different definitions), the parser will assume that what is
wrong is not about the message definition, but about the message
data.

 At that point, the parser decides to skip the bad input piece of data
(still it does exist in the generated tree as RAW untagged data), and
tries to resume parsing as if such piece of data were not there.
Henceforth, the parser backtracks into the message definition to the
point of the first unmatched definition before the problem occurred.

 While backtracking, the parser would also 'unwind' any MARKs that
were generated on the path forward through unmatched definitions.

The net result is that a piece of input data is skipped when too many
errors are raised in sequence about it.
Note that anyhow, the relevant exceptions reporting repetitive failed at-
tempts to match the bad data are kept on records within the Parser and
made available in the total counts of errors at the end of the parsing.

Can we use 'negative' identifiers for segments and groups?
In other words, specify a group of segment to be identified
when the input data is NOT matching a specified pattern?
Let's remind first the positive cases:
The simplest form of segment or group identification is indeed to match a
given pattern like:

"^/" for a group or segment starting with a / character followed by any-
thing else.
"^DIM" for a group or segment starting with "DIM" (usually denoted as
the segment or group tag)

42 / 64

www.reverseXSL.com "ABC" for a group or segment containing the pattern "ABC" anywhere
else (beginning, end, middle or even at several places).
"^A.*;$|^B.*;$" for a segment or group starting with either A or B and
terminating with a semi-colon ';' in either case.

All the above examples are positive cases: the identification pattern is one
amongst a limited set of possible cases.
Now, assume that we are willing to match a structure that is neither of the
potentially following ones. E.g. we have a segment or group that is defined
as neither starting by DIM, nor by OSI. Can we specify that?
The solution is to use in the regular expression non-capturing groups with
logic modifiers.
The solution to the above case (assuming a segment) is:

|||SEG "^(?!(?:DIM)|(?:OSI))" …
Will fail against DIMsomething…
Will fail against OSIsomething…
Will match against LUXsomething… (because it starts neither with DIM,
nor with OSI)
Decomposed:
 ^… indicates to match from the start of data only
 (?…) is non-capturing
 (?!X) matches X via zero-width negative look ahead
 (?:X) is simply X as non-capturing group
 (?:X)|(?:Y) is either X or Y, both as non-capturing groups

What is the meaning of 'optional' cardinality? 'Empty' or
'not-there' at all? Can we distinguish empty data elements
values from optional data elements?
There is a significant difference in XML between a data element that is
absent and one that exists but with a null value. In the later case, the ele-
ment is said to be 'nillable', as declared in XML schemas by:

<xs:element name="D1" type="xs:string" nillable="true"/>

And so an XML parser would accept:
<S1>

<D1></D1>
</S1>

as well as
<S1>

<D1/>
</S1>

By default, an 'optional' element, be it a segment or data element, will be
considered missing (zero occurrence) when 'not there' at all, and only so.

43 / 64

www.reverseXSL.com If there is an empty (zero-length) text element 'facing' the relevant optional
segment or data element, and such optional element cannot accept
matching against a zero length text element, then the element is skipped
(zero occurrence) and the next definition is tested, again for accepting or
not a zero length text element.
Let's illustrate the implications of these rules.
Consider the following dummy message:

AAA.12.34.55....99...' Can accept up to 10 elements with 2 digits.
BBB+001+9+876' Features 3 data elements, all of them optional.
BBB+002++543'
BBB+003' Trailing '+' separators can be omitted.
BBB' A TripleB segment with no elements.
' A completely empty TripleB segment.
DDD/T12/K25/F32' Each element is 'sub'-tagged by T, K or F
DDD/K17/F5' with the consequence that '/' separators
DDD/T44/F92' can also be omitted.
EEE/END' Marking the end of the message.

And the following message definition:

MSG "^AAA" ROOT M 1 1 ACC 1 R W "whole message" CUT-ON-/'\r\n/

|SEG "^AAA" TripleA M 1 1 ACC 1 R W "triple A" CUT-ON-(.)
||D "(AAA)" SKIP M 1 1 ACC 1 R W "triple A tag" ASMATCHED
||D "(.*)" TA1 M 0 10 ACC 99 R W "data TA1" DIGIT

|SEG "^(BBB)?" TripleB O 0 10 ACC 99 R W "triple B" CUT-ON-(+)
||D "(BBB)?" SKIP M 1 1 ACC 1 R W "triple B tag" ASMATCHED
||D "(.*)" TB1 O 0 1 ACC 1 R W "data TB1" DIGIT
||D "(.*)" TB2 O 0 1 ACC 1 R W "data TB2" DIGIT
||D "(.*)" TB3 O 0 1 ACC 1 R W "data TB3" DIGIT

|SEG " (ĈCC.*$)|($̂)" TripleC O 0 10 ACC 99 R W "segC" CUT "CCC(.*)"
||D "(.*)" TC1 O 0 1 ACC 1 R W "data TC1" ASMATCHED

|SEG "^DDD" TripleD M 1 10 ACC 99 R W "triple D" CUT-ON-(/)
||D "(DDD)" SKIP M 1 1 ACC 1 R W "triple D tag" ASMATCHED
||D "T(.*)" T O 0 1 ACC 1 R W "data T" DIGIT
||D "K(.*)" K O 0 1 ACC 1 R W "data K" DIGIT
||D "F(.*)" F O 0 1 ACC 1 R W "data F" DIGIT

|SEG "^EEE" SKIP O 0 10 ACC 99 R W "triple E" CUT-ON-(/)
||D "(EEE)" TripleE M 1 1 ACC 1 R W "triple E tag" ASMATCHED
||D "(END)" END O 0 1 ACC 1 R W "triple E filler" ASMATCHED
END

At the segment level
The question is: looking at the above message and definition, shall we
consider the empty line between BBB and DDD instances as a missing
instance of TripleC because TripleC is optional? The answer is: it all de-
pends from which definition can accept this empty structure.

In case of a group,
a group being just
the logical grouping
of other groups,
segments or data
elements, the group
is missing or exist-
ing according to the
existence or ab-
sence of its mem-
ber elements.

44 / 64

www.reverseXSL.com Looking closer at the definitions of TripleB and TripleC, both can accept an
empty line, and moreover, TripleB accept count is up to 99. The conclu-
sion is that a repetition of Triple B will be matched against the empty line.
This definition yields the XML output (augmented with comments in italics):

<?xml version="1.0" encoding="UTF-8"?>
<ROOT messageID="1234567890">
<TripleA> matched against 'AAA.12.34.55....99...'
<TA1>12</TA1>
<TA1>34</TA1>
<TA1>55</TA1>
<TA1/>
<TA1/>
<TA1/>
<TA1>99</TA1>
<TA1/>
<TA1/>
<TA1/>

</TripleA>
<TripleB> matched against 'BBB+001+9+876'
<TB1>001</TB1>
<TB2>9</TB2>
<TB3>876</TB3>

</TripleB>
<TripleB> matched against 'BBB+002++543'
<TB1>002</TB1>
<TB2/>
<TB3>543</TB3>

</TripleB>
<TripleB> matched against 'BBB+003'
<TB1>003</TB1>

</TripleB>
<TripleB/> matched against 'BBB'
<TripleB/> matched against ''
<TripleD> matched against ' DDD/T12/K25/F32'
<T>12</T>
<K>25</K>
<F>32</F>

</TripleD>
<TripleD> matched against 'DDD/K17/F5'
<K>17</K>
<F>5</F>

</TripleD>
<TripleD> matched against ' DDD/T44/F92'
<T>44</T>
<F>92</F>

</TripleD>
</ROOT>

Where we see not one but two Triple B instances noted <TripleB/> be-
cause the tag is parsed as an element SKIP.
It TripleB identification expression is changed to "^BBB" then the parsing
will yield a TripleC segment noted in XML:

..<TripleC>

Note that segment
tags are matched
onto SKIP elements!

The entire TripleE
segment is SKIP!

45 / 64

www.reverseXSL.com <TC1/>
</TripleC>

Because TC1 as data element is also defined to accept empty values.
If we modify further the definition of TC1 as follows (empty values no
longer accepted):

||D "(.+)" TC1 O 0 1 ACC 1 …
Then we get the XML output:
…
<TripleB/> matched against 'BBB'
<RAW L="6" O="0"/> ??? against ''
<TripleD> matched against ' DDD/T12/K25/F32'
<T>12</T>
…

The absence of any element in TripleC provokes the absence of TripleC
itself (see "In case the source message misses important data elements
…" pg 38). The parser is then unable to match the empty line against any
definition and leaves it untagged as 'RAW' data. Relevant exceptions are
of course raised.
The same problem would occur if neither segment (TripleB or TripleC) is
adjusted to accept a match against an empty line.
At the data element level
It's worth noting that:
 The TripleA segment in XML alternates empty with non-empty ele-

ments in the same sequence as in the original message. If TA1 ele-
ments are positional, the empty elements '<TA1 />' play an important
marker role. The TA1 element definition must accept empty values.

 On the other hand, the data elements in TripleD do not accept empty
values and are actually distinguished from each other by the first let-
ter, leading to an output where only the elements being present are
contained.

 In the middle of these two, we have the TripleB segment:
Data element TB2 in the TripleB segment is neither always present
even if empty like TA1, neither always absent if empty like the T, K, F
elements in TripleD. Indeed the 3rd, 4th and 5th instances of TripleB
do miss entirely the TB2 element due to trailing separator omission
rules, whereas we have an nil element <TB2 \> in the second Tri-
pleB. Consequently, a test on the presence of the TB2 element in the
XML output would not reflect the actual presence or absence of this
element in the original message, but the fact that it is followed or not
by more data!

At first, we may think to solve this issue by removing all empty elements
from the message; but then we would break the positional rank of data
elements TA1 in TripleA.
We can in theory apply two opposite rules:

A. Forcing the generation of all empty optional data elements, even
when 'not there' at all.

This is the behav-
iour by default! It
can be changed,
see further.

46 / 64

www.reverseXSL.com or instead,

B. asking to remove nil data elements under certain conditions:
when the element is optional or conditional (indeed!)
and the element cannot repeat (i.e. ACC 1)
and its specified minimum size is greater than 0

Rule A is not practically feasible, because we can mix data elements, sub-
segments and sub-groups within the same segment or group, and it is
therefore very difficult to set a rule by which these sub-segments and sub-
groups should also be included (or not) into the scope of nil element gen-
eration. Moreover, that rule may yield very lengthy XML messages, heavy
and complex to manipulate in XSL given the large number of nillable ele-
ments that will match XPath expressions but bring no data.
Rule B is actually quite useful on messages based on the principle of posi-
tional data elements within 'segments' (e.g. EDIFACT, TRADACOMS,
X12, etc.), like TripleB in the above sample. Indeed, most positions (think
'slots') in such segments are occupied by optional data elements, all
unique and distinguished by their relative position in the 'segment'. Every
unoccupied position will yield a corresponding NIL data element in XML,
which can be suppressed from the XML output if Rule B is applied.
NIL data elements are suppressed only if they have a min/max size speci-
fication (of the kind [1..15]) with a minimum of at least 1. Obviously, if 0 is
an acceptable size, there's no reason to suppress the element.
Moreover, the element must be non-repeatable otherwise there is a risk to
suppress first and intermediate elements causing undesirable rank shifts.
Rule B shall be applied to both data elements and segments, because one
can always decide to nest structures7 at a further stage and the rule must
be independent from such decision.
Rule B is activated through the method call:

Parser myparser = Parser(…);
myparser.removeNonRepeatableNilOptionalElements(true);

The method must be invoked before the execution of the parsing in itself
(i.e. myparser.parse(…)).

If so invoked, we get:
…
<TripleB> matched against 'BBB+002++543'
<TB1>002</TB1>
<TB3>543</TB3>

</TripleB>
<TripleB> matched against 'BBB+003'
<TB1>003</TB1>

</TripleB>

7 We shall apply the same regime to simple and composite data elements in EDIFACT for instance,
hence to data elements and segments in the present parser, because an EDIFACT composite
element is modeled here as a sub-segment.

This rule is also
applicable to Seg-
ments! (ignoring the
min size constraint)

Remove Non-
Repeatable Nil
Optional Elements

The interest is fur-
ther strengthened
by the ability to
specify fix size op-
tional elements like
[3..3], without
being forced to turn
it to [0..3], as a
means to prevent
insufficient-length
exceptions.

<TB2 /> removed

47 / 64

www.reverseXSL.com <TripleB/> matched against 'BBB'
<TripleD> matched against ' DDD/T12/K25/F32'
<T>12</T>
<K>25</K>
<F>32</F>

</TripleD>
…

Provided that we changed the definition of the Triple B segment as follows:

|SEG "^BBB" TripleB O 0 10 ACC 99 R W "triple B" CUT-ON-(+)
||D "(BBB)?" SKIP M 1 1 ACC 1 R W "triple B tag" ASMATCHED
||D "(.*)" TB1 O 0 1 ACC 1 R W "data TB1" DIGIT [3..3]
||D "(.*)" TB2 O 0 1 ACC 1 R W "data TB2" DIGIT [1..1]
||D "(.*)" TB3 O 0 1 ACC 1 R W "data TB3" DIGIT [3..3]

And for Triple C, we had to set ACC 1:

|SEG " (ĈCC.*$)|($̂)" TripleC O 0 10 ACC 1 R W "segC" CUT "CCC(.*)"
||D "(.+)" TC1 O 0 1 ACC 1 R W "data TC1" ASMATCHED

How can we define a data element to match the empty
string or else a precise pattern?
The context is typically about positional data elements, optional and non-
repeating, that may contain a piece of structured data alike a telephone
number (from which we want for instance to extract only digits) or nothing.
According to the above rules for suppressing Nil XML elements, one must
also allow to capture the empty string as input.
The 'telephone number' solution is as follows:

||D "\+?(?:00)? ?(\d*) ?\(? ?(\d*) ?\)? ?(\d*) ?(\d*) ?(\d*)
?(\d*)|()" TEL O 0 1 ACC 1 R W "telephone" DIGIT [5..]

This pattern is able to remove a leading + or 00 or even +00, remove a
pair of parenthesises, and remove single space chars between up to 4
groups of digits next to the closing parenthesis.
Note that it is important to:
 Put the empty-string match at the end of the regular expression: the

order of regular expressions separated by | (OR symbol) is not neu-
tral.

 Not forgetting to have a minimum size above zero if we want to ever
benefit from the rule removeNonRepeatableNilOptionalElements (cf pre-
vious question).

Can we verify that a data element value matches a limited

TripleC matched
against '' and re-
moved!

48 / 64

www.reverseXSL.com set of codes? (Code lists)
The solution is to provide the list as OR'ed capturing groups; for instance:

D "(RED)|(GREEN)|(BLUE)" ColorCode … ASMATCHED
An alternative is to verify the set of values with a named condition. The
later provides the option, by selecting a proper condition feeding pattern,
to verify only a portion of the entire data value.

8. Sample Program Code
The following sample demonstrates the use of the 'low-level' parser
API. We do recommend that you consider using the Transformer-
Factory and Transformer API (see the corresponding software man-
ual) for a more functional environment, less coding, and increased
productivity.

//variables
int totalRecordedExceptions;

//Constants: number of exceptions that we can accept to record before
//interrupting message parsing

final int MAXFATAL = 5; //max count of exceptions of type FATAL
final int MAXTOTAL = 10; //max count of all exceptions

//Load a Definition object from a file

FileReader fr = new FileReader("sample.DEF");
LineNumberReader lnr = new LineNumberReader(fr);

Definition def = new Definition();
try {

//loading a definition can throw exceptions
/(no way and non-sense to record them silently)
def.loadDefinition(lnr);

} catch (Exception e) {
System.out.println(e.toString());
//One would put more exception handling code here;
//not in this sample

}

//Create a parser for this Definition

Parser parser = new Parser(def,MAXFATAL, MAXTOTAL);

//The parser can get the message instance from a LineNumberReader or a
//String; Let's assume that the message text to parse is in
//messageStr, that the message ID is in messageIDStr, and that
//(for reference) the message text was extracted after a number of
//lines specified in headerLineNb

//at option, we may want to call methods like (cfr §7[6+]):

Please refer to the
documentation of all
methods of the
Parser class in the
JavaDoc (included
in the software dis-
tribution jar).

one can also
use the variant
constructor
method with one
more int
argument
telling the ac-
ceptable count
of successive
matching errors
that will trig-
ger a backtrac-
king attempt
(default is 3).

49 / 64

www.reverseXSL.com parser.removeNonRepeatableNilOptionalElements(true);

try {
//The parser throws exceptions if a MAX count is reached while
//parsing: MAXFATAL or MAXTOTAL.
totalRecordedExceptions = parser.parse(messageIDStr,

messageStr,
headerLineNb);

} catch (Exception e) {
System.out.println(e.toString());
//One would put more recovery code here; not in this sample

}

if (totalRecordedExceptions>0) {

//We got errors; let's iterate through Exceptions
ExceptionListIterator exIter = parser.exceptionIterator();
//Trace exception counts; one could use .size() but
//There are extra specialized methods:
System.out.print("Fatal Exception count: "

+ exIter.fatalExceptionsCount()
+" (of " + exIter.totalExceptionsCount()
+" total)\n");

//This specific 'Exception' ListIterator allows to iterate
//only over the subset of fatal exceptions:
while (exIter.hasNextFatal()) {

System.out.println(exIter.nextFatalException().toString());
};

//We can also dump the parser state; as simple as that:
System.out.println(parser.toString());

//We can well decide to continue processing the message after
//such error reporting activities.
//… see sample code further below… you may want to mark to message
//or use an alternative channel for these suspicious messages.

}
else {

//Everything went fine; generate XML; the first argument (as true)
//instructs to preserve RAW data in output; there shall be none
//because parsing went fine, except for XML tags explicitly set to
//the reserved value "RAW".

//Set the namespace for XML output
parser.setBaseNamespace("http://www.artofe.biz/broker");

//getXML returns a StringWriter object
String xmlOutput = parser.getXML(true,false).toString();

//We can invoke the post-parsing methods (.toSTring(), .getXML(),
//.setNameSpace(), .exceptionIterator()) as many times as desired;
//the same parser object can be re-used to parse many messages;
//the parser state is implicitly reset with every new
//parsing: parser.parse(...)

}

50 / 64

www.reverseXSL.com 9. Command Line Tools
We assume that the reverseXSL .jar file is available on the
CLASSPATH, else you will add the necessary –classpath declara-
tion to all java command lines below

Regex Tester
com.reverseXSL.util.RegexCheck

Usage :
java com.reverseXSL.util.RegexCheck

also available as an MS-Windows executable RegexCheck.exe

Allows experimenting with regular expressions in general, and lists
the Parser behaviour if the relevant expression is used for identifica-
tion, or data validation, or extraction pattern, or else as segment cut-
ting function (CUT "pattern").

The command-line Parser
com.reverseXSL.Parse

Usage :
java com.reverseXSL.Parse myDefinitionFile

Creates a sample XML message matching the definition
or :
java com.reverseXSL.Parse myDefinitionFile myInputMessageFile

Executes the Parser from the command line and outputs a dump of
the parser state followed by the generated XML.

or :
java com.reverseXSL.Parse myDefinitionFile myTOKEN

This is a variant of the previous command where the actual mes-
sage file name is taken from inside the DEF file itself8. This mode is
very useful to automate tests while developing new message trans-
formations (e.g. via a run configuration in Eclipse, or as custom
commands in StylusStudio).

or :
java com.reverseXSL.Parse myDefinitionFile myInputMessageFileOrToken

<MaxFatalExceptions> <MaxExceptions> <true|false>

where the last argument tells to removeNonRepeatableNilOptionalElements

Note that the XML message is written on stdout, whereas the parser state
dump is written on stderr

8 if for instance the token is FILE01, you may insert a comment (i.e. with a space or tab as leading
character) in the DEF file like:

#FILE01=myMessage.txt;
whose format is formally:

<at least one space or tab>#<token>=<filename>;

These command
line tools are also
contained in the
software distribution
jar.

The higher level
Transform
command line tool
is documented in
the main rever-
seXSL software
manual

51 / 64

www.reverseXSL.com It is then easy to capture just the XML output by calling:

java Parse myDefinitionFile myInputMessageFile >>out.xml

10. Philosophical Considerations

Recommended practice in using Fatal or Warning excep-
tion impacts, and Maximum exception counts
We propose the following very simple rules:
 Specify a Fatal exception whenever the parsing is in danger of in-

terpreting data wrongly; e.g. mixing up a quantity with price info;
taking one segment for another, and so forth.

 By extension, those errors at parsing time that may still preserve the
proper decoding of the message but risk causing misinterpretations
on the receiving application side shall also be recorded as fatal ex-
ceptions. Henceforth, specify a Fatal exception for all missing or
miss-formatted elements that belong to the semantic core of a given
message. For instance, the container number is obviously essential
in a container movement message; without it, the message is use-
less. A shipment date is similarly essential, but the container contour
code or a sender's reference may not affect the correct processing,
especially when the target application can retrieve this information
from its database or earlier messages.

 Whenever the Fatal Exception count is above 0, reject the corre-
sponding message and report this back to the sender via a negative
acknowledgement as applicable.

 The only interest in recording (and not immediately throwing) any fa-
tal exception (even a single one) would be in testing or QA such as to
speed-up corrections by fixing more would-be-fatal errors at once.

 Vice versa, use Warning exceptions for any deviation from the strict
syntax that would anyhow let the parser identify properly which
data means what, and let the receiving application process it. For
instance:

o Accept more occurrences of a group, segment or data ele-
ment than formally allowed, given that the distinction with
any following piece of data is clear and the receiving applica-
tion can handle such extra data.

o Let elements (segments, data elements) become optional
where the formal definition tells that these are mandatory
(e.g. use O 1 1 ACC 99), provided too that suitable default
values are available in the receiving application context.

o Loosen data identification and extraction patterns, e.g. ac-
cepting lower case (and other characters) at the point of
identification but checking for uppercase (or specific charac-
ter sets) at the point of data value validation with an associ-
ated warning exception.

If the parser is at
risk of slipping into
wrong matches, this
must be Fatal. If
parsing remains on
track, this is warn-
ing.

52 / 64

www.reverseXSL.com o Accept smaller and bigger size data elements than formally
specified whenever the target can also handle it, and report
any discrepancy as warnings at the point of [min..max] size
validation.

 Use a high total maximum exception count like 15 or 20 (and max fa-
tal exception count of 0) and kindly report any warning back to the
sender while keeping on processing his message.

 Consider any number of exceptions in excess of this threshold as a
sufficient reason to reject the whole message (and return negative
acknowledgements). In other words, more than 15 or 20 warnings
are worth one fatal exception…and that shall cause message rejec-
tion.

How extensively shall we enforce data validation?
Consider a few questions:
Shall the parser check that, for instance, an article ID or a flight number
exists? Obviously no, because that is bound to business information and
associated rules; e.g. the flight number exists but there's no such flight on
that one day which is a holiday in the country where the airline is
based…the article ID exists but is no longer shipped…validating such in-
formation is not the job of a data conversion engine.
Shall the parser check that a date at some position is after or before the
date specified (or implied) at another place in the message? One would
say no because that sounds again as a business rule…
Shall the parser verify that a given field is a valid date, e.g. unlike
32.13.2007? I would say no once more, because the parser does not need
such test to effectively parse the message correctly! Moreover, applica-
tions can conventionally use dates like 99.99.9999 or 00.00.00 to say "un-
specified". And would we check that Tuesday March 13th 2009 is actually
not valid (it's a Friday!)?
Shall the parser check that the date is a valid date because such date can
be equally written in the message as: 20061231 or 31122006? Yes here!
Because the validity test is, in the present case, the only way to parse cor-
rectly this field and know which part is the year, which part is the month,
and which one is the day…

To do such complex parsing one would define a mandatory group
made of 2 optional data elements, each one bearing an identification
pattern respectively as "20[0-9][0-9][01][0-9][0-3][0-9]" and "[0-3][0-9]
[01][0-9]20[0-9][0-9]" (valid between 2000 and 2099), followed a
MARK to qualify the date format. One can also use the same pat-
terns for two segments, each containing a different cut of the date
into three data elements.

The proposed rules are indeed that:
 A parser shall use the message syntax to the extent necessary

for the correct interpretation of which piece of data is which
field.

53 / 64

www.reverseXSL.com  Beyond that, it is the responsibility of end applications to check
the validity of data values.

Note that the control of character sets by a parser is a common practice
although in many places such controls would not contribute at all to the
correct interpretation of message fields. It is indeed accepted that a viola-
tion of the standard character sets of data fields shall be reported as a
message syntax error along with the verification of mandatory / optional
and other cardinality constraints. Hence, the right place is also at parsing
time.
However, controlling the validity of a date, or the fact that, for instance, a
colour code belongs to a given set of values, or that a number fits within a
given range, all that shall be avoided as much as possible.
Moreover:
 One shall move as much as possible any data value validation

to the <char-spec> functions in data element definitions.

Let us clarify this principle with an example:

The following data:
CV7747/7751/21.LXKCV.LHR

Will match the following definition:

===== Flight section =====
|GRP "" FlightIdentification M 1 1 ACC 1 R F "UCM-2.FI"
||SEG "" NOTAG M 1 1 ACC 1 R F "FI" CUT-ON-(/)
|||SEG "" NOTAG M 1 1 ACC 1 R W "FI1" CUT " (̂..)(.{1,5})$"
||||D "(.*)" CarrierCode M 1 1 ACC 1 R W "CCode" ASMATCHED
||||D "(.*)" FlightNbr M 1 1 ACC 1 R W "FFN" ASMATCHED
|||D "([.̂]{1,5})" FlightNbr2 O 0 1 ACC 1 R W "SFN" ASMATCHED
|||SEG "" NOTAG M 1 1 ACC 1 R W "DFA Grp" CUT-ON-(.)
||||D "(..?)" DayOfMonth M 1 1 ACC 1 R W "DoM" DIGIT
||||D "(.{5,7})" Registration O 0 1 ACC 1 R W "AR" ASMATCHED
||||D "(...)" AirportCode M 1 1 ACC 1 R W "ACoM" ASMATCHED

If we now parse the following input data:
CV7747/7751/2x.LXKCV.LHR

We get the error message:
ERROR P013: Parsing error about element <DayOfMonth>(DoM), context
[2x] at L:12 O:12, impact [Warning].
Caused by: ERROR P005: Data value invalid versus [Numerical-Digit]!
(validating this [2x] against "[0-9]*").

…which is what we shall indeed expect.
Let's now change the definition of the DayOfMonth element to:
||||D "([0-9][0-9]?)" DayOfMonth M 1 1 ACC 1 R W "DoM" DIGIT

The error message becomes:
ERROR P013: Parsing error about element <NOTAG>(DFA Grp), con-
text [2x.LXKCV.LHR] at L:12 O:12, impact [Warning].
Caused by: ERROR P007: Missing mandatory segment [NOTAG]!
(identifying this "" in [2x.LXKCV.LHR]).

…which would likely confuse the user about the real cause of his error.

54 / 64

www.reverseXSL.com The fact is that the pattern of a data element, here "([0-9][0-9]?)" is meant
as a validation and an extraction pattern. Validation means answering the
question: "is this the right data element?" and indeed, the alternative defi-
nition here above yields NO! Because the pattern does not match the input
string.
Consequently, this element being the first Mandatory piece of a segment,
the Parser suspects that it entered into the segment by mistake and would
give a chance to the following definition. But then the parser realizes that
the segment definition that it is leaving is mandatory (and it just failed to
match it because the first mandatory piece failed to...), hence the error
message.
In the above example, because of the explict "." separators between data
elements, a restrictive data element validation pattern is not helping at all
the parsing process in itself, and so any validation must be moved to the
<char-specs> functions.
There are however cases where the parsing of non-positional elements
can only work with the help of validation; for instance, these three ele-
ments:
/1234/LHR/15122006

Could only be dissociated from the case where the middle one is absent
/1234/15122006

By testing that the second—optional—element is exactly 3 letters whereas
the third (becoming second) element always starts with a digit!
In that later case, some extended data validation is required to drive a cor-
rect parsing.
Note that if we had the variant:
/1234//15122006

There is no problem to parse data elements using "(.*)" because the sepa-
rators provide data elements with an explicit and fixed position in the seg-
ment.

What is the interest in ACCepting more than the maximum
number of occurrences? e.g. 'O 0 3 ACC 99'
The interest is very high!
Indeed, if we have extra instances of some data structure in an input mes-
sage (be it a data element, segment or group) and the parser stops at an
ACCept count = MAX expected number, the parser will then try to match
these extras against any of the following definitions till a mandatory one is
found that does not match it, and then report an error about that one man-
datory piece (possibly far down in the message) being missing! Although,
the real cause is too many instances of the very first structure under con-
sideration.
So the rules shall be:
 Provided that the parsing is not at risk of misinterpreting data, do use

ACCept counts as high as possible, such as to benefit from explicit
indications of excess occurrences.

55 / 64

www.reverseXSL.com  By the same token, relax the Mandatory conditions and turn them to
Optional cardinality whenever the parsing could not slide into a
wrong track of interpreting input data (e.g. there are explicit tags in
front of every segment and the same segment does not reappear
later in the message with another meaning).

 But in all cases do align <MIN> and <MAX> cardinality with the exact
requirements in the standard message syntax.

Doing so, one would always get the proper error messages when in-
stances are missing or in excess of the specifications.

11. Known Issues and Limitations

XML output indentation
The Parser has been originally developed for JRE 1.4. It works too under
JRE 1.5 and later versions.
Between the JRE 1.4 and 1.5 changes have been introduced in JAXP with
the consequence that the indentation of the XML output requires a differ-
ent procedure in JRE 1.5 versus 1.4. The system adapts itself automati-
cally to the environment.
However, we observed that indentation is not yielding similar results on all
system configurations encountered so far and bearing either JRE 1.5 or
1.4. The most common variation is that of an XML output where indenta-
tion length is reset to 0. The differences worsen when followed by an
XSLT transformation step. Yet, in all cases the variations are only visible in
text based editors, given that the generated XML document is valid and
formally identical in all cases. Moreover, the document is re-indented for
display by most specialized XML editors, thus masking the differences in
the distribution of space-only text nodes that count for indentations.
The transformer provides a special 'printableTransform()' method that
compensates eventual differences in indentation logic. The later is a utility
method that shall only be used for unit testing and manual inspection of
XML outputs.

Using the same named condition in different parent struc-
tures
Consider the following message samples (truncated):

UCM
…
IN
.NIL
OUT
.NIL

Sample with no
Incoming and no
Outgoing ULD data

56 / 64

www.reverseXSL.com UCM
…
IN
.PCM11111CV.AHM22222LH.DKP33333AF.RET44444.UYT55555XQ
.PCM22222CV.AHM99999LH.DKP44444AF.ABC12345XQ
OUT
.NIL

UCM
…
IN
.NIL
OUT
.AKL12345CV/JFK/B.AHM12345LH/SFO/A.RET12345

UCM
…
IN
.PCM11111CV.AHM22222LH.DKP33333AF.RET44444.UYT55555XQ
OUT
.AKL12345CV/JFK/B.AHM12345LH/SFO/A.RET12345
.UKF54321CV/LUX/B.AHM12345CV/BRU/A

We see that the IN and OUT sections always contain a 'dot'-line, either
with NIL alone, either full of ULD data. In the later case, the line can be
repeated.
Let's look at the following definition (truncated):

COND NILorFULL "X" DEPTH 2 R W "exclusive elements"

MSG "^UCM$" ROOT …
…

===== Incoming ULD section =====
|GRP " ÎN$" IncomingULD M 1 1 ACC 1 R W "Incoming ULD section"
||D "(IN)" SKIP M 1 1 ACC 1 R W "IN tag" …
||D "(.NIL)" NoIncoming C 0 1 ACC 1 COND NILorFULL "X" …
||GRP " \̂." NOTAG C 0 1 ACC 1 COND NILorFULL "X" …
|||SEG "^\." IncomingULD M 1 99 ACC 99 …
||||D …
||||D …

===== Outgoing ULD section =====
|GRP " ÔUT$" OutgoingULD M 1 1 ACC 1 R W "Outgoing ULD section"
||D "(OUT)" SKIP M 1 1 ACC 1 R W "OUT tag" …
||D "(.NIL)" NoOutgoing C 0 1 ACC 1 COND NILorFULL "X" …
||GRP " \̂." NOTAG C 0 1 ACC 1 COND NILorFULL "X" …
|||SEG "^\." OutgoingULD M 1 99 ACC 99 …
||||D …
||||D …
…
END

The symmetry of the IN and OUT sections makes it rather tempting to
share the same named condition (depth level 2) within IN and OUT sec-
tions, the latter being at depth level 1.

Sample with only
Incoming ULD data

Sample with only
Outgoing ULD data

Sample with both
Incoming and Out-
going ULD data

57 / 64

www.reverseXSL.com However, assuming a good message alike:
UCM
…
IN
.NIL
OUT
.AKL12345CV/JFK/B.AHM12345LH/SFO/A.RET12345

The named condition tokens and occurrences will be recorded as:

-2-COLLECTED NAMED CONDITIONS CRITERIA:
Name: NILorFULL (2 token(s))
- 1- 1- 1 = [X]
- 1- 1- 1 = [X]

Causing the parser to report an exception because "XX" resulting from a
depth level 2 evaluation will fail to meet the requirement for a single "X" as
specified in the COND line.
We see that there's no break in occurrence numbers. Indeed, at depth
level 1 (underlined above) we have the first IN occurrence as well as first
OUT occurrence.
The isolation of Named Conditions for evaluation is solely based on oc-
currence breaks. The evaluation does not take into account any underly-
ing structure name changes. This is by design, in order to allow named
conditions to span across many different structures, whatever their names,
tags or else.
The solution to our problem is very simple: one must, by design, force dif-
ferent names to different condition contexts or semantics, and refrain from
the kind of re-use illustrated above.
The correct message definition becomes:

COND NILorIN "X" DEPTH 2 R W "exclusive within the IN section"
COND NILorOUT "X" DEPTH 2 R W "exclusive within the OUT section"

MSG "^UCM$" ROOT …
…

===== Incoming ULD section =====
|GRP " ÎN$" IncomingULD M 1 1 ACC 1 R W "Incoming ULD section"
||D "(IN)" SKIP M 1 1 ACC 1 R W "IN tag" …
||D "(.NIL)" NoIncoming C 0 1 ACC 1 COND NILorIN "X" …
||GRP " \̂." NOTAG C 0 1 ACC 1 COND NILorIN "X" …
|||SEG "^\." IncomingULD M 1 99 ACC 99 …
||||D …
||||D …

===== Outgoing ULD section =====
|GRP " ÔUT$" OutgoingULD M 1 1 ACC 1 R W "Outgoing ULD section"
||D "(OUT)" SKIP M 1 1 ACC 1 R W "OUT tag" …
||D "(.NIL)" NoOutgoing C 0 1 ACC 1 COND NILorOUT "X" …
||GRP " \̂." NOTAG C 0 1 ACC 1 COND NILorOUT "X" …
|||SEG "^\." OutgoingULD M 1 99 ACC 99 …
||||D …
||||D …

We clearly have a
IN section and a
OUT section like
pears and apples;
their structural simi-
larities shall not
lead us to think that
inside exclusivities
could extend their
meaning outside
these respective
contexts.

58 / 64

www.reverseXSL.com …
END

59 / 64

www.reverseXSL.com 12. APPENDIX: Regular Expressions

Regexp tips:
 http://wesnerm.blogs.com/net_undocumented/2005/05/regular_express

.html
An article about performance of regexp's

 http://regexadvice.com/ & http://regexlib.com/ & http://www.regular-
expressions.info/
Online collections of tips

Essentials:
 The regexp tutorial at www.reverseXSL.com, dedicated to the fastest

ramping up on Parsing tasks and DEF file development.

 http://java.sun.com/developer/technicalArticles/releases/1.4regex/
Article: Regular Expressions and the Java Programming Language

 http://java.sun.com/docs/books/tutorial/essential/regex/groups.html
A tutorial on Capturing Groups

 http://java.sun.com/docs/books/tutorial/essential/regex/quant.html
Understanding greedy, reluctant and possessive behaviors

Class Pattern:
java.util.regex.Pattern

A compiled representation of a regular expression.
A regular expression, specified as a string, must first be compiled into an
instance of this class. The resulting pattern can then be used to create a
Matcher object that can match arbitrary character sequences against the
regular expression. All of the state involved in performing a match resides
in the matcher, so many matchers can share the same pattern.
A typical invocation sequence is thus

Pattern p = Pattern.compile("a*b");

Matcher m = p.matcher("aaaaab");

boolean b = m.matches();

A matches method is defined by this class as a convenience for when a
regular expression is used just once. This method compiles an expression
and matches an input sequence against it in a single invocation. The
statement

boolean b = Pattern.matches("a*b", "aaaaab");

is equivalent to the three statements above, though for repeated matches
it is less efficient since it does not allow the compiled pattern to be reused.
Instances of this class are immutable and are safe for use by multiple con-

The rest of the pre-
sent document is an
excerpt of the
standard java API
specifications of the
Pattern class. It is
purely informative
and supplied un-
modified, as a con-
venience for quick
reference.
This information is
copyrighted by
SUN Microsys-
tems. It may have
changed and you
shall refer to the
original documents
and license pub-
lished on ja-
va.sun.com.
We do not endorse
this documentation
as much as their
authors do not en-
dorse the
reverseXSL prod-
ucts. No rights are
granted nor trans-
ferred in any form,
no claims are
made.

60 / 64

www.reverseXSL.com current threads. Instances of the Matcher class are not safe for such use.
Summary of regular-expression constructs

Construct Matches
Characters
x The character x
\\ The backslash character
\0n The character with octal value 0n (0 <= n <= 7)
\0nn The character with octal value 0nn (0 <= n <= 7)

\0mnn The character with octal value 0mnn (0 <= m <= 3, 0 <= n <= 7)
\xhh The character with hexadecimal value 0xhh
\uhhhh The character with hexadecimal value 0xhhhh
\t The tab character ('\u0009')
\n The newline (line feed) character ('\u000A')
\r The carriage-return character ('\u000D')
\f The form-feed character ('\u000C')
\a The alert (bell) character ('\u0007')
\e The escape character ('\u001B')
\cx The control character corresponding to x

Character classes
[abc] a, b, or c (simple class)
[^abc] Any character except a, b, or c (negation)
[a-zA-Z] a through z or A through Z, inclusive (range)
[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)
[a-z&&[def]] d, e, or f (intersection)
[a-z&&[^bc]] a through z, except for b and c: [ad-z] (subtraction)
[a-z&&[^m-p]] a through z, and not m through p: [a-lq-z](subtraction)

Predefined character classes
. Any character (may or may not match line terminators)
\d A digit: [0-9]
\D A non-digit: [^0-9]
\s A whitespace character: [\t\n\x0B\f\r]
\S A non-whitespace character: [^\s]
\w A word character: [a-zA-Z_0-9]
\W A non-word character: [^\w]

POSIX character classes (US-ASCII only)
\p{Lower} A lower-case alphabetic character: [a-z]
\p{Upper} An upper-case alphabetic character:[A-Z]
\p{ASCII} All ASCII:[\x00-\x7F]
\p{Alpha} An alphabetic character:[\p{Lower}\p{Upper}]
\p{Digit} A decimal digit: [0-9]
\p{Alnum} An alphanumeric character:[\p{Alpha}\p{Digit}]
\p{Punct} Punctuation: One of !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

\p{Graph} A visible character: [\p{Alnum}\p{Punct}]
\p{Print} A printable character: [\p{Graph}]
\p{Blank} A space or a tab: [\t]

61 / 64

www.reverseXSL.com \p{Cntrl} A control character: [\x00-\x1F\x7F]
\p{XDigit} A hexadecimal digit: [0-9a-fA-F]
\p{Space} A whitespace character: [\t\n\x0B\f\r]

Classes for Unicode blocks and categories
\p{InGreek} A character in the Greek block (simple block)
\p{Lu} An uppercase letter (simple category)
\p{Sc} A currency symbol
\P{InGreek} Any character except one in the Greek block (negation)
[\p{L}&&[^\p{Lu}]] Any letter except an uppercase letter (subtraction)

Boundary matchers
^ The beginning of a line
$ The end of a line
\b A word boundary
\B A non-word boundary
\A The beginning of the input
\G The end of the previous match
\Z The end of the input but for the final terminator, if any
\z The end of the input

Greedy quantifiers
X? X, once or not at all
X* X, zero or more times
X+ X, one or more times
X{n} X, exactly n times
X{n,} X, at least n times
X{n,m} X, at least n but not more than m times

Reluctant quantifiers
X?? X, once or not at all
X*? X, zero or more times
X+? X, one or more times
X{n}? X, exactly n times
X{n,}? X, at least n times
X{n,m}? X, at least n but not more than m times

Possessive quantifiers
X?+ X, once or not at all
X*+ X, zero or more times
X++ X, one or more times
X{n}+ X, exactly n times
X{n,}+ X, at least n times
X{n,m}+ X, at least n but not more than m times

62 / 64

www.reverseXSL.com
Logical operators
XY X followed by Y
X|Y Either X or Y
(X) X, as a capturing group

Back references
\n Whatever the nth capturing group matched

Quotation
\ Nothing, but quotes the following character
\Q Nothing, but quotes all characters until \E
\E Nothing, but ends quoting started by \Q

Special constructs (non-capturing)
(?:X) X, as a non-capturing group
(?idmsux-idmsux) Nothing, but turns match flags on - off
(?idmsux-idmsux:X) X, as a non-capturing group with the given flags on - off
(?=X) X, via zero-width positive lookahead
(?!X) X, via zero-width negative lookahead
(?<=X) X, via zero-width positive lookbehind
(?<!X) X, via zero-width negative lookbehind
(?>X) X, as an independent, non-capturing group

Backslashes, escapes, and quoting
The backslash character ('\') serves to introduce escaped constructs, as
defined in the table above, as well as to quote characters that otherwise
would be interpreted as unescaped constructs. Thus the expression \\

matches a single backslash and \{ matches a left brace.
It is an error to use a backslash prior to any alphabetic character that does
not denote an escaped construct; these are reserved for future extensions
to the regular-expression language. A backslash may be used prior to a
non-alphabetic character regardless of whether that character is part of an
unescaped construct.
Backslashes within string literals in Java source code are interpreted as
required by the Java Language Specification as either Unicode escapes or
other character escapes. It is therefore necessary to double backslashes
in string literals that represent regular expressions to protect them from
interpretation by the Java bytecode compiler. The string literal "\b", for
example, matches a single backspace character when interpreted as a
regular expression, while "\\b" matches a word boundary. The string lit-
eral "\(hello\)" is illegal and leads to a compile-time error; in order to
match the string (hello) the string literal "\\(hello\\)" must be used.
Character Classes
Character classes may appear within other character classes, and may be
composed by the union operator (implicit) and the intersection operator
(&&). The union operator denotes a class that contains every character that
is in at least one of its operand classes. The intersection operator denotes
a class that contains every character that is in both of its operand classes.
The precedence of character-class operators is as follows, from highest to

where flags are:
i ignore case
d 'unix lines', i.e.

only \n accepted
as line termina-
tor

m MULTILINE
mode, see fur-
ther

s DOTALL mode:
'.' can match line
terminators, see
further

u Unicode aware
case folding

x permit com-
ments with #

63 / 64

www.reverseXSL.com lowest:
1 Literal escape \x

2 Grouping [...]

3 Range a-z

4 Union [a-e][i-u]

5 Intersection [a-z&&[aeiou]]

Note that a different set of metacharacters are in effect inside a character
class than outside a character class. For instance, the regular expression
. loses its special meaning inside a character class, while the expression -

becomes a range forming metacharacter.
Line terminators
A line terminator is a one- or two-character sequence that marks the end
of a line of the input character sequence. The following are recognized as
line terminators:

 A newline (line feed) character ('\n'),
 A carriage-return character followed immediately by a newline

character ("\r\n"),
 A standalone carriage-return character ('\r'),
 A next-line character ('\u0085'),
 A line-separator character ('\u2028'), or
 A paragraph-separator character ('\u2029).

If UNIX_LINES mode is activated, then the only line terminators recognized
are newline characters.
The regular expression . matches any character except a line terminator
unless the DOTALL flag is specified.
By default, the regular expressions ^ and $ ignore line terminators and
only match at the beginning and the end, respectively, of the entire input
sequence. If MULTILINE mode is activated then ^ matches at the beginning
of input and after any line terminator except at the end of input. When in
MULTILINE mode $ matches just before a line terminator or the end of the
input sequence.
Groups and capturing
Capturing groups are numbered by counting their opening parentheses
from left to right. In the expression ((A)(B(C))), for example, there are
four such groups:

1 ((A)(B(C)))

2 (A)

3 (B(C))

4 (C)

Group zero always stands for the entire expression.
Capturing groups are so named because, during a match, each subse-
quence of the input sequence that matches such a group is saved. The
captured subsequence may be used later in the expression, via a back
reference, and may also be retrieved from the matcher once the match

64 / 64

www.reverseXSL.com operation is complete.
The captured input associated with a group is always the subsequence
that the group most recently matched. If a group is evaluated a second
time because of quantification then its previously-captured value, if any,
will be retained if the second evaluation fails. Matching the string "aba"

against the expression (a(b)?)+, for example, leaves group two set to "b".
All captured input is discarded at the beginning of each match.
Groups beginning with (? are pure, non-capturing groups that do not cap-
ture text and do not count towards the group total.
Unicode support
This class follows Unicode Technical Report #18: Unicode Regular Ex-
pression Guidelines, implementing its second level of support though with
a slightly different concrete syntax.
Unicode escape sequences such as \u2014 in Java source code are pro-
cessed as described in 3.3 of the Java Language Specification. Such es-
cape sequences are also implemented directly by the regular-expression
parser so that Unicode escapes can be used in expressions that are read
from files or from the keyboard. Thus the strings "\u2014" and "\\u2014",
while not equal, compile into the same pattern, which matches the charac-
ter with hexadecimal value 0x2014.
Unicode blocks and categories are written with the \p and \P constructs as
in Perl. \p{prop} matches if the input has the property prop, while \P{prop}
does not match if the input has that property. Blocks are specified with the
prefix In, as in InMongolian. Categories may be specified with the optional
prefix Is: Both \p{L} and \p{IsL} denote the category of Unicode letters.
Blocks and categories can be used both inside and outside of a character
class.
The supported blocks and categories are those of The Unicode Standard,
Version 3.0. The block names are those defined in Chapter 14 and in the
file Blocks-3.txt of the Unicode Character Database except that the spaces
are removed; "Basic Latin", for example, becomes "BasicLatin". The
category names are those defined in table 4-5 of the Standard (p. 88),
both normative and informative.

* * *

